

Practical Python and
OpenCV: An Introductory,
Example Driven Guide to

Image Processing and
Computer Vision

3rd Edition

Dr. Adrian Rosebrock

C O P Y R I G H T

The contents of this book, unless otherwise indicated, are
Copyright c©2016 Adrian Rosebrock, PyImageSearch.com.
All rights reserved.

This version of the book was published on 21 August
2016.

Books like this are made possible by the time invested by
the authors. If you received this book and did not purchase
it, please consider making future books possible by buy-
ing a copy at https://www.pyimagesearch.com/practical-
python-opencv/ today.

ii

https://www.pyimagesearch.com/practical-python-opencv/
https://www.pyimagesearch.com/practical-python-opencv/

C O N T E N T S

1 introduction 1

2 python and required packages 5

2.1 A note on Python & OpenCV Versions 6

2.2 NumPy and SciPy 7

2.2.1 Windows 8

2.2.2 OSX 8

2.2.3 Linux 9

2.3 Matplotlib . 9

2.3.1 All Platforms 9

2.4 OpenCV . 10

2.4.1 Linux and OSX 11

2.4.2 Windows 11

2.5 Mahotas . 12

2.5.1 All Platforms 12

2.6 scikit-learn . 12

2.6.1 All Platforms 13

2.7 scikit-image . 13

2.8 Skip the Installation 14

3 loading , displaying , and saving 15

4 image basics 20

4.1 So, What’s a Pixel? 20

4.2 Overview of the Coordinate System 23

4.3 Accessing and Manipulating Pixels 23

5 drawing 32

5.1 Lines and Rectangles 32

5.2 Circles . 37

6 image processing 43

6.1 Image Transformations 43

iii

Contents

6.1.1 Translation 44

6.1.2 Rotation 49

6.1.3 Resizing 54

6.1.4 Flipping 60

6.1.5 Cropping 63

6.2 Image Arithmetic 65

6.3 Bitwise Operations 72

6.4 Masking . 75

6.5 Splitting and Merging Channels 82

6.6 Color Spaces 86

7 histograms 90

7.1 Using OpenCV to Compute Histograms . . . 91

7.2 Grayscale Histograms 92

7.3 Color Histograms 94

7.4 Histogram Equalization 100

7.5 Histograms and Masks 102

8 smoothing and blurring 109

8.1 Averaging . 111

8.2 Gaussian . 113

8.3 Median . 114

8.4 Bilateral . 117

9 thresholding 120

9.1 Simple Thresholding 120

9.2 Adaptive Thresholding 124

9.3 Otsu and Riddler-Calvard 128

10 gradients and edge detection 133

10.1 Laplacian and Sobel 134

10.2 Canny Edge Detector 139

11 contours 143

11.1 Counting Coins 143

12 where to now? 153

iv

C O M PA N I O N W E B S I T E & S U P P L E M E N TA RY
M AT E R I A L

Thank you for picking up a copy of the 3rd edition of
Practical Python and OpenCV!

In this latest edition, I’m excited to announce the creation
of a companion website which includes supplementary mate-
rial that I could not fit inside the book.

At the end of nearly every chapter inside Practical Python
and OpenCV + Case Studies, you’ll find a link to a supplemen-
tary webpage that includes additional information, such as
my commentary on methods to extend your knowledge,
discussions of common error messages, recommendations
on various algorithms to try, and optional quizzes to test
your knowledge.

Registration to the companion website is free with your
purchase of Practical Python and OpenCV.

To create your companion website account, just use this
link:

http://pyimg.co/o1y7e

Take a second to create your account now so you’ll have
access to the supplementary materials as you work through
the book.

v

http://ppao.pyimagesearch.com/register/practical-python-and-opencv-supplementary-material/

P R E FA C E

When I first set out to write this book, I wanted it to be
as hands-on as possible. I wanted lots of visual examples
with lots of code. I wanted to write something that you
could easily learn from, without all the rigor and detail of
mathematics associated with college level computer vision
and image processing courses.

I know from all my years spent in the classroom that the
way I learned best was from simply opening up an editor
and writing some code. Sure, the theory and examples in
my textbooks gave me a solid starting point. But I never
really “learned” something until I did it myself. I was very
hands-on. And that’s exactly how I wanted this book to be.
Very hands-on, with all the code easily modifiable and well
documented so you could play with it on your own. That’s
why I’m giving you the full source code listings and images
used in this book.

More importantly, I wanted this book to be accessible to
a wide range of programmers. I remember when I first
started learning computer vision – it was a daunting task.
But I learned a lot. And I had a lot of fun.

I hope this book helps you in your journey into computer
vision. I had a blast writing it. If you have any questions,
suggestions, or comments, or if you simply want to say
hello, shoot me an email at adrian@pyimagesearch.com, or

vi

mailto:adrian@pyimagesearch.com

Contents

you can visit my website at www.PyImageSearch.com and
leave a comment. I look forward to hearing from you soon!

-Adrian Rosebrock

vii

http://www.pyimagesearch.com

P R E R E Q U I S I T E S

In order to make the most of this, you will need to have
a little bit of programming experience. All examples in this
book are in the Python programming language. Familiarity
with Python or other scripting languages is suggested, but
not required.

You’ll also need to know some basic mathematics. This
book is hands-on and example driven: lots of examples and
lots of code, so even if your math skills are not up to par,
do not worry! The examples are very detailed and heavily
documented to help you follow along.

viii

C O N V E N T I O N S U S E D I N T H I S B O O K

This book includes many code listings and terms to aid
you in your journey to learn computer vision and image
processing. Below are the typographical conventions used
in this book:

Italic

Indicates key terms and important information that
you should take note of. May also denote mathemati-
cal equations or formulas based on connotation.

Bold

Important information that you should take note of.

Constant width

Used for source code listings, as well as paragraphs
that make reference to the source code, such as func-
tion and method names.

ix

U S I N G T H E C O D E E X A M P L E S

This book is meant to be a hands-on approach to com-
puter vision and machine learning. The code included in
this book, along with the source code distributed with this
book, are free for you to modify, explore, and share as you
wish.

In general, you do not need to contact me for permis-
sion if you are using the source code in this book. Writing
a script that uses chunks of code from this book is totally
and completely okay with me.

However, selling or distributing the code listings in this
book, whether as information product or in your product’s
documentation, does require my permission.

If you have any questions regarding the fair use of the
code examples in this book, please feel free to shoot me an
email. You can reach me at adrian@pyimagesearch.com.

x

mailto:adrian@pyimagesearch.com

H O W T O C O N TA C T M E

Want to find me online? Look no further:

Website: www.PyImageSearch.com
Email: adrian@pyimagesearch.com
Twitter: @PyImageSearch
Google+: +AdrianRosebrock
LinkedIn: Adrian Rosebrock

xi

http://www.pyimagesearch.com
mailto:adrian@pyimagesearch.com
https://twitter.com/pyimagesearch
https://plus.google.com/115909176846554117735/?rel=author
http://www.linkedin.com/pub/adrian-rosebrock/2a/873/59b

1
I N T R O D U C T I O N

The goal of computer vision is to understand the story
unfolding in a picture. As humans, this is quite simple. But
for computers, the task is extremely difficult.

So why bother learning computer vision?

Well, images are everywhere!

Whether it be personal photo albums on your smartphone,
public photos on Facebook, or videos on YouTube, we now
have more images than ever – and we need methods to an-
alyze, categorize, and quantify the contents of these images.

For example, have you recently tagged a photo of your-
self or a friend on Facebook lately? How does Facebook
seem to “know” where the faces are in an image?

Facebook has implemented facial recognition algorithms
into their website, meaning that they cannot only find faces
in an image, they can also identify whose face it is as well!
Facial recognition is an application of computer vision in
the real world.

1

introduction

What other types of useful applications of computer vi-
sion are there?

Well, we could build representations of our 3D world us-
ing public image repositories like Flickr. We could down-
load thousands and thousands of pictures of Manhattan,
taken by citizens with their smartphones and cameras, and
then analyze them and organize them to construct a 3D rep-
resentation of the city. We would then virtually navigate
this city through our computers. Sound cool?

Another popular application of computer vision is surveil-
lance.

While surveillance tends to have a negative connotation
of sorts, there are many different types. One type of surveil-
lance is related to analyzing security videos, looking for
possible suspects after a robbery.

But a different type of surveillance can be seen in the re-
tail world. Department stores can use calibrated cameras to
track how you walk through their stores and which kiosks
you stop at.

On your last visit to your favorite clothing retailer, did
you stop to examine the spring’s latest jeans trends? How
long did you look at the jeans? What was your facial expres-
sion as you looked at the jeans? Did you then pick up a pair
and head to the dressing room? These are all types of ques-
tions that computer vision surveillance systems can answer.

Computer vision can also be applied to the medical field.
A year ago, I consulted with the National Cancer Institute

2

introduction

to develop methods to automatically analyze breast histol-
ogy images for cancer risk factors. Normally, a task like
this would require a trained pathologist with years of expe-
rience – and it would be extremely time consuming!

Our research demonstrated that computer vision algo-
rithms could be applied to these images and could auto-
matically analyze and quantify cellular structures – without
human intervention! Now, we can analyze breast histology
images for cancer risk factors much faster.

Of course, computer vision can also be applied to other
areas of the medical field. Analyzing X-rays, MRI scans,
and cellular structures all can be performed using computer
vision algorithms.

Perhaps the biggest success computer vision success story
you may have heard of is the X-Box 360 Kinect. The Kinect
can use a stereo camera to understand the depth of an im-
age, allowing it to classify and recognize human poses, with
the help of some machine learning, of course.

The list doesn’t stop there.

Computer vision is now prevalent in many areas of your
life, whether you realize it or not. We apply computer vi-
sion algorithms to analyze movies, football games, hand
gesture recognition (for sign language), license plates (just
in case you were driving too fast), medicine, surgery, mili-
tary, and retail.

We even use computer visions in space! NASA’s Mars
Rover includes capabilities to model the terrain of the planet,

3

introduction

detect obstacles in its path, and stitch together panoramic
images.

This list will continue to grow in the coming years.

Certainly, computer vision is an exciting field with end-
less possibilities.

With this in mind, ask yourself: what does your imagina-
tion want to build? Let it run wild. And let the computer
vision techniques introduced in this book help you build it.

Further Reading

Welcome to the supplementary material portion of the
chapter! If you haven’t already registered and created
your account for the companion website, please do so
using the following link:

http://pyimg.co/o1y7e

From there, you can find the Chapter 1 supplemen-
tary material page here:

http://pyimg.co/rhsgi

This page serves as an introduction to the companion
website and details how to use it and what to expect
as you work through the rest of Practical Python and
OpenCV.

4

http://pyimg.co/o1y7e
http://pyimg.co/rhsgi

2
P Y T H O N A N D R E Q U I R E D PA C K A G E S

In order to explore the world of computer vision, we’ll
first need to install some packages and libraries. As a first-
timer in computer vision, installing some of these packages
(especially OpenCV) can be quite tedious, depending on
what operating system you are using. I’ve tried to consoli-
date the installation instructions into a short how-to guide,
but as you know, projects change, websites change, and in-
stallation instructions change! If you run into problems, be
sure to consult the package’s website for the most up-to-
date installation instructions.

I highly recommend that you use either easy_install or
pip to manage the installation of your packages. It will
make your life much easier! You can read more about pip
here: http://pyimg.co/9quup.

Finally, if you don’t want to undertake installing these
packages by hand, I have put together an Ubuntu virtual
machine with all the necessary computer vision and image
processing packages you need to run the examples in this
book pre-installed! Using this virtual machine allows you
to jump right in to the examples in this book, without hav-
ing to worry about package managers, installation instruc-

5

http://pyimg.co/9quup

2.1 a note on python & opencv versions

tions, and compiling errors.

To find out more about this pre-configured virtual ma-
chine, head on over to: http://www.pyimagesearch.com
/practical-python-opencv/.

In the rest of this chapter, I will discuss the various Python
packages that are useful for computer vision and image pro-
cessing. I’ll also provide instructions on how to install each
of these packages.

It is worth mentioning that I have collected OpenCV in-
stallation tutorials for various Python versions and operat-
ing systems on PyImageSearch: http://pyimg.co/vvlpy.

Be sure to take a look as I’m sure the install guides will
be helpful to you! In the meantime, let’s review some im-
portant Python packages that we’ll use for computer vision.

2.1 a note on python & opencv versions

Over a year ago, when I wrote the first edition of Practi-
cal Python and OpenCV + Case Studies, the current version
of OpenCV was 2.4.9, which only supported Python 2.7.
While many scientific developers (myself included) are very
much accustomed to using Python 2.7, newcomers to com-
puter vision and machine learning were often confused and
frustrated by the lack of Python 3 support – Python 3 is the
future of the Python programming language, after all!

However, this all changed on June 4th, 2015, which marked
a momentous date in the history of OpenCV:

6

http://www.pyimagesearch.com/practical-python-opencv/
http://www.pyimagesearch.com/practical-python-opencv/
http://pyimg.co/vvlpy

2.2 numpy and scipy

OpenCV 3.0 was finally released!

The benefits of OpenCV 3.0 are numerous, including im-
proved stability, performance, increases, and even transpar-
ent OpenCL support.

But by far the most exciting update to us in the Python
world is:

Python 3 support!

After years of being stuck and sequestered to Python 2.7,
we can now finally use OpenCV with Python 3+!

Inside this book, you’ll find that all chapters, code sam-
ples, and datasets are compatible with OpenCV 3+. Fur-
thermore, all code examples will run in both the Python
2.7 and the Python 3+ environments!

If you are looking for the OpenCV 2.4.X and Python 2.7
version of this book, please look in the download directory
associated with your purchase – inside you will find the
OpenCV 2.4.X + Python 2.7 edition.

2.2 numpy and scipy

NumPy is a library for the Python programming language
that (among other things) provides support for large, multi-
dimensional arrays. Why is that important? Using NumPy,
we can express images as multi-dimensional arrays. Repre-
senting images as NumPy arrays is not only computation-

7

2.2 numpy and scipy

ally and resource efficient, many other image processing
and machine learning libraries use NumPy array represen-
tations as well. Furthermore, by using NumPy’s built-in
high-level mathematical functions, we can quickly and eas-
ily perform numerical analysis on an image.

Going hand-in-hand with NumPy, we also have SciPy.
SciPy adds further support for scientific and technical com-
puting.

2.2.1 Windows

By far, the easiest way to install NumPy and SciPy on your
Windows system is to download and install the binary dis-
tribution from: http://www.scipy.org/install.html.

2.2.2 OSX

If you are running OSX 10.7.0 (Lion) or above, NumPy and
SciPy come pre-installed.

You can also install NumPy and SciPy using pip:

Listing 2.1: Install NumPy and SciPy on OSX

$ pip install numpy
$ pip install scipy

8

http://www.scipy.org/install.html

2.3 matplotlib

2.2.3 Linux

On many Linux distributions, such as Ubuntu, NumPy comes
pre-installed and configured.

If you want the latest versions of NumPy and SciPy, you
can build the libraries from source, but the easiest method
is to use a pip:

Listing 2.2: Install NumPy and SciPy on Linux

$ pip install numpy
$ pip install scipy

2.3 matplotlib

Simply put, matplotlib is a plotting library. If you’ve ever
used MATLAB before, you’ll probably feel very comfort-
able in the matplotlib environment. When analyzing im-
ages, we’ll make use of matplotlib. Whether plotting image
histograms or simply viewing the image itself, matplotlib
is a great tool to have in your toolbox.

2.3.1 All Platforms

Matplotlib is available from http://matplotlib.org/. The
matplotlib package is also pip-installable:

Listing 2.3: Install matplotlib

$ pip install matplotlib

Otherwise, a binary installer is provided for Windows.

9

http://matplotlib.org/

2.4 opencv

2.4 opencv

If NumPy’s main goal is large, efficient, multi-dimensional
array representations, then, the main goal of OpenCV is
real-time image processing. This library has been around
since 1999, but it wasn’t until the 2.0 release in 2009 that
we saw the incredible NumPy support. The library itself is
written in C/C++, but Python bindings are provided when
running the installer. OpenCV is hands down my favorite
computer vision library, and we’ll use it a lot in this book.

In June 2015, OpenCV 3.0 was officially released. This
update is definitely one of the most extensive overhauls to
the library in recent years and boasts increased stability, per-
formance increases, and OpenCL support.

But by far, the most exciting update for us in the Python
world is: Python 3 support!

After years of being stuck in Python 2.7, we can now fi-
nally use OpenCV in Python 3.0! Awesome news, indeed!

The installation for OpenCV is constantly changing. Since
the library is written in C/C++, special care has to be taken
when compiling and ensuring that the prerequisites are in-
stalled. Be sure to check the OpenCV website at http://opencv.org/
for the latest installation instructions since they do (and
will) change in the future.

10

http://opencv.org/

2.4 opencv

2.4.1 Linux and OSX

Installing OpenCV in Linux and OSX has been a pain in
previous years, but has luckily gotten much easier. I have
accumulated OpenCV installation instructions on the PyIm-
ageSearch blog for Debian-based Linux distributions (such
as Ubuntu) and OSX here:

http://pyimg.co/vvlpy

Just scroll down the “Install OpenCV 3 and Python” sec-
tion, select the operating system and Python version that
you want to install OpenCV 3 for, and you’ll be on your
way!

Alternatively, you can install the previous version of OpenCV
2.4.X on OSX using these instructions from Jeffrey Thomp-
son:

http://pyimg.co/kdwts

2.4.2 Windows

The OpenCV Docs provide fantastic tutorials on how to in-
stall OpenCV in Windows using binary distributions. You
can check out the installation instructions here:

http://pyimg.co/l2q6s

11

http://pyimg.co/vvlpy
http://pyimg.co/kdwts
http://pyimg.co/l2q6s

2.5 mahotas

2.5 mahotas

Mahotas, just like OpenCV, relies on NumPy arrays. Much
of the functionality implemented in Mahotas can be found
in OpenCV, but in some cases, the Mahotas interface is just
easier to use. We’ll use Mahotas to complement OpenCV.

2.5.1 All Platforms

Installing Mahotas is extremely easy on all platforms. As-
suming you already have NumPy and SciPy installed, all
you need is a single call to the pip command:

Listing 2.4: Install Mahotas

$ pip install mahotas

2.6 scikit-learn

Alright, you got me, scikit-learn isn’t an image processing
or computer vision library – it’s a machine learning library.
That said, you can’t have advanced computer vision tech-
niques without some sort of machine learning, whether it
be clustering, vector quantization, classification models, etc.
Scikit-learn also includes a handful of image feature extrac-
tion functions as well. We don’t use the scikit-learn library
in Practical Python and OpenCV, but it’s heavily used in Case
Studies.

12

2.7 scikit-image

2.6.1 All Platforms

Installing scikit-learn on all platforms is dead-simple using
pip:

Listing 2.5: Install scikit-learn

$ pip install scikit-learn

2.7 scikit-image

The algorithms included in scikit-image (I would argue) fol-
low closer to the state-of-the-art in computer vision. New
algorithms right from academic papers can be found in
scikit-image, but in order to (effectively) use these algo-
rithms, you need to have developed some rigor and under-
standing in the computer vision field. If you already have
some experience in computer vision and image processing,
definitely check out scikit-image; otherwise, I would con-
tinue working with OpenCV to start. Again, scikit-image
won’t be used in of Practical Python and OpenCV, but it will
be used in Case Studies, especially when we perform hand-
written digit recognition.

Assuming you already have NumPy and SciPy installed,
you can install scikit-image using pip:

Listing 2.6: Install scikit-image

$ pip install -U scikit-image

Now that we have all our packages installed, let’s start
exploring the world of computer vision!

13

2.8 skip the installation

2.8 skip the installation

As I’ve mentioned above, installing all these packages can
be time consuming and tedious. If you want to skip the
installation process and jump right into the world of im-
age processing and computer vision, I have set up a pre-
configured Ubuntu virtual machine with all of the above
libraries mentioned already installed.

If you are interested in downloading this virtual machine
(and saving yourself a lot of time and hassle), you can
head on over to http://www.pyimagesearch.com/practical-
python-opencv/.

Further Reading

To learn more about installing OpenCV, Python virtual
environments, and choosing a code editor, please see
the Chapter 2 supplementary material webpage:

http://pyimg.co/f0sxq

In particular, I think you’ll be interested in learning
how the PyCharm IDE can be utilized with Python vir-
tual environments to create the perfect computer vision
development environment.

14

http://www.pyimagesearch.com/practical-python-opencv/
http://www.pyimagesearch.com/practical-python-opencv/
http://pyimg.co/f0sxq

3

L O A D I N G , D I S P L AY I N G , A N D S AV I N G

This book is meant to be a hands-on, how-to guide to get-
ting started with computer vision using Python and OpenCV.
With that said, let’s not waste any time. We’ll get our feet
wet by writing some simple code to load an image off disk,
display it on our screen, and write it to file in a different
format. When executed, our Python script should show
our image on screen, like in Figure 3.1.

First, let’s create a file named load_display_save.py to
contain our code. Now we can start writing some code:

Listing 3.1: load_display_save.py

1 from __future__ import print_function
2 import argparse
3 import cv2
4

5 ap = argparse.ArgumentParser()
6 ap.add_argument("-i", "--image", required = True,
7 help = "Path to the image")
8 args = vars(ap.parse_args())

The first thing we are going to do is import the packages
we will need for this example.

15

loading , displaying , and saving

Figure 3.1: Example of loading and displaying
a Tyrannosaurus Rex image on our
screen.

Throughout this book you’ll see us importing the print_
function from the __future__ package. We’ll be using the
actual print() function rather than the print statement so
that our code will work with both Python 2.7 and Python
3 – just something to keep in mind as we work through the
examples!

We’ll use argparse to handle parsing our command line
arguments. Then, cv2 is imported – cv2 is our OpenCV li-
brary and contains our image processing functions.

From there, Lines 5-8 handle parsing the command line
arguments. The only argument we need is --image: the
path to our image on disk. Finally, we parse the arguments
and store them in a dictionary.

16

loading , displaying , and saving

Listing 3.2: load_display_save.py

9 image = cv2.imread(args["image"])
10 print("width: {} pixels".format(image.shape[1]))
11 print("height: {} pixels".format(image.shape[0]))
12 print("channels: {}".format(image.shape[2]))
13

14 cv2.imshow("Image", image)
15 cv2.waitKey(0)

Now that we have the path to the image, we can load it
off the disk using the cv2.imread function on Line 9. The
cv2.imread function returns a NumPy array representing
the image.

Lines 10-12 examine the dimensions of the image. Again,
since images are represented as NumPy arrays, we can sim-
ply use the shape attribute to examine the width, height,
and the number of channels.

Finally, Lines 14 and 15 handle displaying the actual
image on our screen. The first parameter is a string, the
“name” of our window. The second parameter is a refer-
ence to the image we loaded off disk on Line 9. Finally, a
call to cv2.waitKey pauses the execution of the script until
we press a key on our keyboard. Using a parameter of 0
indicates that any keypress will un-pause the execution.

The last thing we are going to do is write our image to
file in JPG format:

Listing 3.3: load_display_save.py

16 cv2.imwrite("newimage.jpg", image)

All we are doing here is providing the path to the file
(the first argument) and then the image we want to save

17

loading , displaying , and saving

(the second argument). It’s that simple.

To run our script and display our image, we simply open
up a terminal window and execute the following command:

Listing 3.4: load_display_save.py

$ python load_display_save.py --image ../images/trex.png

If everything has worked correctly, you should see the T-
Rex on your screen as in Figure 3.1. To stop the script from
executing, simply click on the image window and press any
key.

Examining the output of the script, you should also see
some basic information on our image. You’ll note that the
image has a width of 350 pixels, a height of 228 pixels, and 3

channels (the RGB components of the image). Represented
as a NumPy array, our image has a shape of (228,350,3).

The NumPy shape may seem reversed to you (specifying
the height before the width), but in terms of a matrix defini-
tion, it actually makes sense. When we define matrices, it is
common to write them in the form (# of rows × # of columns).
Here, our image has a height of 228 pixels (the number of
rows) and a width of 350 pixels (the number of columns) –
thus, the NumPy shape makes sense (although it may seen
a bit confusing at first).

Finally, note the contents of your directory. You’ll see a
new file there: newimage.jpg. OpenCV has automatically
converted our PNG image to JPG for us! No further effort
is needed on our part to convert between image formats.

18

loading , displaying , and saving

Next up, we’ll explore how to access and manipulate the
pixel values in an image.

Further Reading

You can find the Chapter 3 supplementary material, re-
sources, and quizzes here:

http://pyimg.co/xh73h

Specifically, I discuss some common “gotchas” that may
trip you up when utilizing OpenCV for the first time –
these tips and tricks are especially useful if this is your
first exposure to OpenCV.

Be sure to take the quiz to test your knowledge after
reading this chapter!

19

http://pyimg.co/xh73h

4

I M A G E B A S I C S

In this chapter we are going to review the building blocks
of an image – the pixel. We’ll discuss exactly what a pixel
is, how pixels are used to form an image, and then how to
access and manipulate pixels in OpenCV.

4.1 so, what’s a pixel?

Every image consists of a set of pixels. Pixels are the raw
building blocks of an image. There is no finer granularity
than the pixel.

Normally, we think of a pixel as the “color” or the “inten-
sity” of light that appears in a given place in our image.

If we think of an image as a grid, each square in the grid
contains a single pixel.

For example, let’s pretend we have an image with a res-
olution of 500 × 300. This means that our image is repre-
sented as a grid of pixels, with 500 rows and 300 columns.
Overall, there are 500 × 300 = 150, 000 pixels in our image.

20

4.1 so, what’s a pixel?

Most pixels are represented in two ways: grayscale and
color. In a grayscale image, each pixel has a value between
0 and 255, where zero corresponds to “black” and 255 cor-
responds to “white”. The values in between 0 and 255 are
varying shades of gray, where values closer to 0 are darker
and values closer to 255 are lighter.

Color pixels are normally represented in the RGB color
space – one value for the Red component, one for Green,
and one for Blue. Other color spaces exist, but let’s start
with the basics and move our way up from there.

Each of the three colors is represented by an integer in
the range 0 to 255, which indicates how “much” of the color
there is. Given that the pixel value only needs to be in the
range [0, 255], we normally use an 8-bit unsigned integer to
represent each color intensity.

We then combine these values into an RGB tuple in the
form (red, green, blue). This tuple represents our color.

To construct a white color, we would fill up each of the
red, green, and blue buckets completely, like this: (255,
255,255).

Then, to create a black color, we would empty each of the
buckets out: (0,0,0).

To create a pure red color, we would fill up the red bucket
(and only the red bucket) up completely: (255,0,0).

Are you starting to see a pattern?

21

4.1 so, what’s a pixel?

For your reference, here are some common colors repre-
sented as RGB tuples:

• Black: (0,0,0)

• White: (255,255,255)

• Red: (255,0,0)

• Green: (0,255,0)

• Blue: (0,0,255)

• Aqua: (0,255,255)

• Fuchsia: (255,0,255)

• Maroon: (128,0,0)

• Navy: (0,0,128)

• Olive: (128,128,0)

• Purple: (128,0,128)

• Teal: (0,128,128)

• Yellow: (255,255,0)

Now that we have a good understanding of pixels, let’s
have a quick review of the coordinate system.

22

4.2 overview of the coordinate system

4.2 overview of the coordinate system

As I mentioned above, an image is represented as a grid of
pixels. Imagine our grid as a piece of graph paper. Using
this graph paper, the point (0, 0) corresponds to the upper
left corner of the image. As we move down and to the right,
both the x and y values increase.

Let’s take a look at the image in Figure 4.1 to make this
point clearer.

Here we have the letter “I” on a piece of graph paper. We
see that we have an 8 × 8 grid with a total of 64 pixels.

The point (0, 0) corresponds to the top left pixel in our
image, whereas the point (7, 7) corresponds to the bottom
right corner.

Finally, the point (3, 4) is the pixel three columns to the
right and four rows down, once again keeping in mind that
we start counting from zero rather than one.

The Python language is zero indexed, meaning that we al-
ways start counting from zero. Remember this and you’ll
avoid a lot of confusion later on.

4.3 accessing and manipulating pixels

Admittedly, the example from Chapter 3 wasn’t very excit-
ing. All we did was load an image off disk, display it, and

23

4.3 accessing and manipulating pixels

Figure 4.1: The letter “I” placed on a piece of
graph paper. Pixels are accessed by
their (x, y) coordinates, where we go
x columns to the right and y rows
down, keeping in mind that Python
is zero-indexed: we start counting
from zero rather than one.

24

4.3 accessing and manipulating pixels

then write it back to disk in a different image file format.

Let’s do something a little more exciting and see how we
can access and manipulate the pixels in an image:

Listing 4.1: getting_and_setting.py

1 from __future__ import print_function
2 import argparse
3 import cv2
4

5 ap = argparse.ArgumentParser()
6 ap.add_argument("-i", "--image", required = True,
7 help = "Path to the image")
8 args = vars(ap.parse_args())
9

10 image = cv2.imread(args["image"])
11 cv2.imshow("Original", image)

Similar to our example in the previous chapter, Lines 1-8
handle importing the packages we need, along with setting
up our argument parser. There is only one command line
argument needed: the path to the image we are going to
work with.

Lines 10 and 11 handle loading the actual image off disk
and displaying it to us.

So now that we have the image loaded, how can we ac-
cess the actual pixel values?

Remember, OpenCV represents images as NumPy arrays.
Conceptually, we can think of this representation as a ma-
trix, as discussed in Section 4.1 above. In order to access a
pixel value, we just need to supply the x and y coordinates
of the pixel we are interested in. From there, we are given
a tuple representing the Red, Green, and Blue components

25

4.3 accessing and manipulating pixels

of the image.

However, it’s important to note that OpenCV stores RGB
channels in reverse order. While we normally think in terms
of Red, Green, and Blue, OpenCV actually stores them in
the order of Blue, Green, and Red. This is important to
note since it could cause some confusion later.

Alright, let’s explore some code that can be used to ac-
cess and manipulate pixels:

Listing 4.2: getting_and_setting.py

12 (b, g, r) = image[0, 0]
13 print("Pixel at (0, 0) - Red: {}, Green: {}, Blue: {}".format(r,

g, b))
14

15 image[0, 0] = (0, 0, 255)
16 (b, g, r) = image[0, 0]
17 print("Pixel at (0, 0) - Red: {}, Green: {}, Blue: {}".format(r,

g, b))

On Line 12, we grab the pixel located at (0, 0) – the top-
left corner of the image. This pixel is represented as a tuple.
Again, OpenCV stores RGB pixels in reverse order, so when
we unpack and access each element in the tuple, we are ac-
tually viewing them in BGR order. Then, Line 13 prints out
the values of each channel to our console.

As you can see, accessing pixel values is quite easy! Num-
Py takes care of all the hard work for us. All we are doing
is providing indexes into the array.

Just as NumPy makes it easy to access pixel values, it also
makes it easy to manipulate pixel values.

26

4.3 accessing and manipulating pixels

On Line 15 we manipulate the top-left pixel in the im-
age, which is located at coordinate (0, 0) and set it to have
a value of (0, 0, 255). If we were reading this pixel value
in RGB format, we would have a value of 0 for red, 0 for
green, and 255 for blue, thus making it a pure blue color.

However, as I mentioned above, we need to take special
care when working with OpenCV. Our pixels are actually
stored in BGR format, not RGB format.

We actually read this pixel as 255 for red, 0 for green, and
0 for blue, making it a red color, not a blue color.

After setting the top-left pixel to have a red color on Line
15, we then grab the pixel value and print it back to con-
sole on Lines 16 and 17, just to demonstrate that we have
indeed successfully changed the color of the pixel.

Accessing and setting a single pixel value is simple enough,
but what if we wanted to use NumPy’s array slicing capa-
bilities to access larger rectangular portions of the image?
The code below demonstrates how we can do this:

Listing 4.3: getting_and_setting.py

18 corner = image[0:100, 0:100]
19 cv2.imshow("Corner", corner)
20

21 image[0:100, 0:100] = (0, 255, 0)
22

23 cv2.imshow("Updated", image)
24 cv2.waitKey(0)

On Line 18 we grab a 100× 100 pixel region of the image.
In fact, this is the top-left corner of the image! In order to
grab chunks of an image, NumPy expects we provide four

27

4.3 accessing and manipulating pixels

indexes:

1. Start y: The first value is the starting y coordinate.
This is where our array slice will start along the y-axis.
In our example above, our slice starts at y = 0.

2. End y: Just as we supplied a starting y value, we must
provide an ending y value. Our slice stops along the
y-axis when y = 100.

3. Start x: The third value we must supply is the starting
x coordinate for the slice. In order to grab the top-left
region of the image, we start at x = 0.

4. End x: Finally, we need to provide an x-axis value for
our slice to stop. We stop when x = 100.

Once we have extracted the top-left corner of the image,
Line 19 shows us the result of the cropping. Notice how
our image is just the 100 × 100 pixel region from the top-
left corner of our original image.

The last thing we are going to do is use array slices to
change the color of a region of pixels. On Line 21, you can
see that we are again accessing the top-left corner of the
image; however, this time we are setting this region to have
a value of (0, 255, 0) (green).

Lines 23 and 24 then show us the results of our work.

So how do we run our Python script?

Assuming you have downloaded the source code listings
for this book, simply navigate to the chapter-04 directory

28

4.3 accessing and manipulating pixels

and execute the command below:

Listing 4.4: getting_and_setting.py

$ python getting_and_setting.py --image ../images/trex.png

Once our script starts running, you should see some out-
put printed to your console (Line 13). The first line of out-
put tells us that the pixel located at (0, 0) has a value of
254 for all three red, green, and blue channels. This pixel
appears to be almost pure white.

The second line of output shows us that we have success-
fully changed the pixel located at (0, 0) to be red rather than
white (Lines 15-17).

Listing 4.5: getting_and_setting.py

Pixel at (0, 0) - Red: 254, Green: 254, Blue: 254
Pixel at (0, 0) - Red: 255, Green: 0, Blue: 0

We can see the results of our work in Figure 4.2. The Top-
Left image is our original image we loaded off disk. The
image on the Top-Right is the result of our array slicing and
cropping out a 100 × 100 pixel region of the image. And, if
you look closely, you can see that the top-left pixel located
at (0, 0) is red!

Finally, the bottom image shows that we have successfully
drawn a green square on our image.

In this chapter, we have explored how to access and ma-
nipulate the pixels in an image using NumPy’s built-in ar-
ray slicing functionality. We were even able to draw a green

29

4.3 accessing and manipulating pixels

Figure 4.2: Top-Left: Our original image. Top-
Right: Cropping our image using
NumPy array slicing. Bottom: Draw-
ing a 100× 100 pixel green square on
our image by using basic NumPy in-
dexing.

30

4.3 accessing and manipulating pixels

square using nothing but NumPy array manipulation!

However, we won’t get very far using only NumPy func-
tions. The next chapter will show you how to draw lines,
rectangles, and circles using OpenCV methods.

Further Reading

One of the most common errors I see with developers
just starting to learn OpenCV is the (x, y)-coordinate
ordering passed into images. I also tend to see a lot of
confusion regarding the BGR versus RGB channel or-
dering.

To learn more about these common errors (and how
you can avoid) then, be sure to refer to the Chapter 4

supplementary material:

http://pyimg.co/mtemn

I’ve also included a quiz that you can use to test your
knowledge on image basics.

31

http://pyimg.co/mtemn

5

D R AW I N G

Using NumPy array slices in Chapter 4, we were able to
draw a green square on our image. But what if we wanted
to draw a single line? Or a circle? NumPy does not provide
that type of functionality – it’s only a numerical processing
library after all!

Luckily, OpenCV provides convenient, easy-to-use meth-
ods to draw shapes on an image. In this chapter, we’ll re-
view the three most basic methods to draw shapes: cv2.
line, cv2.rectangle, and cv2.circle.

While this chapter is by no means a complete, exhaus-
tive overview of the drawing capabilities of OpenCV, it will
nonetheless provide a quick, hands-on approach to get you
started drawing immediately.

5.1 lines and rectangles

Before we start exploring the the drawing capabilities of
OpenCV, let’s first define our canvas in which we will draw
our masterpieces.

32

5.1 lines and rectangles

Up until this point, we have only loaded images off disk.
However, we can also define our images manually using
NumPy arrays. Given that OpenCV interprets an image as
a NumPy array, there is no reason why we can’t manually
define the image ourselves!

In order to initialize our image, let’s examine the code
below:

Listing 5.1: drawing.py

1 import numpy as np
2 import cv2
3

4 canvas = np.zeros((300, 300, 3), dtype = "uint8")

Lines 1 and 2 imports the packages we will be using.
As a shortcut, we’ll create an alias for numpy as np. We’ll
continue this convention throughout the rest of the book.
In fact, you’ll commonly see this convention in the Python
community as well! We’ll also import cv2, so we can have
access to the OpenCV library.

Initializing our image is handled on Line 4. We construct
a NumPy array using the np.zeros method with 300 rows
and 300 columns, yielding a 300× 300 pixel image. We also
allocate space for 3 channels – one for Red, Green, and Blue,
respectively. As the name suggests, the zeros method fills
every element in the array with an initial value of zero.

It’s important to draw your attention to the second argu-
ment of the np.zeros method: the data type, dtype. Since
we are representing our image as an RGB image with pixels
in the range [0, 255], it’s important that we use an 8-bit un-
signed integer, or uint8. There are many other data types

33

5.1 lines and rectangles

that we can use (common ones include 32-bit integers, and
32-bit or 64-bit floats), but we’ll mainly be using uint8 for
the majority of the examples in this book.

Now that we have our canvas initialized, we can do some
drawing:

Listing 5.2: drawing.py

5 green = (0, 255, 0)
6 cv2.line(canvas, (0, 0), (300, 300), green)
7 cv2.imshow("Canvas", canvas)
8 cv2.waitKey(0)
9

10 red = (0, 0, 255)
11 cv2.line(canvas, (300, 0), (0, 300), red, 3)
12 cv2.imshow("Canvas", canvas)
13 cv2.waitKey(0)

The first thing we do on Line 5 is define a tuple used to
represent the color “green”. Then, we draw a green line
from point (0, 0) (the top-left corner of the image) to point
(300, 300), the bottom-right corner of the image on Line 6.

In order to draw the line, we make use of the cv2.line
method. The first argument to this method is the image we
are going to draw on. In this case, it’s our canvas. The sec-
ond argument is the starting point of the line. We choose
to start our line from the top-left corner of the image, at
point (0, 0). We also need to supply an ending point for the
line (the third argument). We define our ending point to be
(300, 300), the bottom-right corner of the image. The last ar-
gument is the color of our line, which, in this case, is green.
Lines 7 and 8 show our image and then wait for a keypress.

34

5.1 lines and rectangles

Figure 5.1: Examples of drawing lines and rect-
angles using OpenCV.

As you can see, drawing a line is quite simple! But
there is one other important argument to consider in the
cv2.line method: the thickness.

On Lines 10-13 we define a red color as a tuple (again,
in BGR rather than RGB format). We then draw a red line
from the top-right corner of the image to the bottom left.
The last parameter to the method controls the thickness of
the line – we decide to make the thickness 3 pixels. Again,
we show our image and wait for a keypress.

Drawing a line was simple enough. Now we can move on
to drawing rectangles. Check out the code below for more
details:

Listing 5.3: drawing.py

14 cv2.rectangle(canvas, (10, 10), (60, 60), green)
15 cv2.imshow("Canvas", canvas)

35

5.1 lines and rectangles

16 cv2.waitKey(0)
17

18 cv2.rectangle(canvas, (50, 200), (200, 225), red, 5)
19 cv2.imshow("Canvas", canvas)
20 cv2.waitKey(0)
21

22 blue = (255, 0, 0)
23 cv2.rectangle(canvas, (200, 50), (225, 125), blue, -1)
24 cv2.imshow("Canvas", canvas)
25 cv2.waitKey(0)

On Line 14 we make use of the cv2.rectangle method.
The signature of this method is identical to the cv2.line
method above, but let’s explore each argument anyway.

The first argument is the image we want to draw our rect-
angle on. We want to draw on our canvas, so we pass it into
the method. The second argument is the starting (x, y) po-
sition of our rectangle – here, we are starting our rectangle
at point (10, 10). Then, we must provide an ending (x, y)
point for the rectangle. We decide to end our rectangle at
(60, 60), defining a region of 50 × 50 pixels. Finally, the last
argument is the color of the rectangle we want to draw.

Just as we can control the thickness of a line, we can also
control the thickness of a rectangle. Line 18 provides one
added argument: the thickness. Here, we draw a red rect-
angle that is 5 pixels thick, starting from point (50, 200) and
ending at (200, 225).

At this point, we have only drawn the outline of a rect-
angle. How do we draw a rectangle that is “filled in”, like
when using NumPy array slices in Chapter 4?

36

5.2 circles

Figure 5.2: Drawing a simple bullseye with the
cv2.circle function.

Simple. We just pass in a negative value for the thickness
argument.

Line 23 demonstrates how to draw a rectangle of a solid
color. We draw a blue rectangle, starting from (200, 50) and
ending at (225, 125). By specifying -1 as the thickness, our
rectangle is drawn as a solid blue.

Congratulations! You now have a solid grasp of drawing
rectangles. In the next section, we’ll move on to drawing
circles.

5.2 circles

Drawing circles is just as simple as drawing rectangles, but
the function arguments are a little different. Let’s go ahead
and get started:

37

5.2 circles

Listing 5.4: drawing.py

26 canvas = np.zeros((300, 300, 3), dtype = "uint8")
27 (centerX, centerY) = (canvas.shape[1] // 2, canvas.shape[0] // 2)
28 white = (255, 255, 255)
29

30 for r in range(0, 175, 25):
31 cv2.circle(canvas, (centerX, centerY), r, white)
32

33 cv2.imshow("Canvas", canvas)
34 cv2.waitKey(0)

On Line 26 we re-initialize our canvas to be blank. The
rectangles are gone! We need a fresh canvas to draw our
circles.

Line 27 calculates two variables: centerX and centerY.
These two variables represent the (x, y) coordinates of the
center of the image. We calculate the center by examining
the shape of our NumPy array, and then dividing by two.
The height of the image can be found in canvas.shape[0]
and the width in canvas.shape[1]. Finally, Line 28 defines
a white pixel.

Now, let’s draw some circles!

On Line 30 we loop over a number of radius values, start-
ing from 0 and ending at 150 (since the range function is
exclusive), incrementing by 25 at each step.

Line 31 handles the actual drawing of the circle. The first
parameter is our canvas, the image we want to draw the
circle on. We then need to supply the point in which our
circle will be drawn around. We pass in a tuple of (centerX,
centerY) so that our circles will be centered at the middle
of the image. The third argument is the radius of the circle
we wish to draw. Finally, we pass in the color of our circle,

38

5.2 circles

in this case, white.

Lines 33 and 34 then show our image and wait for a key-
press.

So what does our image look like?

Check out Figure 5.2 and you will see that we have drawn
a simple bullseye! The “dot” in the very center of the image
is drawn with a radius of 0. The larger circles are drawn
with every increasing radii sizes from our for loop.

Not too bad. But what else can we do?

Let’s do some abstract drawing:

Listing 5.5: drawing.py

35 for i in range(0, 25):
36 radius = np.random.randint(5, high = 200)
37 color = np.random.randint(0, high = 256, size = (3,)).tolist

()
38 pt = np.random.randint(0, high = 300, size = (2,))
39

40 cv2.circle(canvas, tuple(pt), radius, color, -1)
41

42 cv2.imshow("Canvas", canvas)
43 cv2.waitKey(0)

Our code starts off on Line 35 with more looping. This
time we aren’t looping over the size of our radii – we are
instead going to draw 25 random circles, making use of
NumPy’s random number capabilities through the np.random.
randint function.

In order to draw a random circle, we need to generate
three values: the radius of the circle, the color of the circle,

39

5.2 circles

Figure 5.3: The results of our masterpiece. No-
tice that each circle is randomly
placed on the canvas with a random
color.

and the pt – the (x, y) coordinate of where the circle will be
drawn.

We generate a radius value in the range [5, 200) on Line
36. This value controls how large our circle will be.

Next, we randomly generate a color on Line 37. As we
know, the color of an RGB pixel consists of three values in
the range [0, 255]. In order to get three random integers
rather than only one integer, we pass the keyword argu-
ment size=(3,), instructing NumPy to return a list of three
numbers.

40

5.2 circles

Finally, we need an (x, y) point to draw our circle. We’ll
generate a point in the range [0, 300), again using NumPy’s
np.random.randint function.

The drawing of our circle then takes place on Line 40,
using the radius, color, and pt that we randomly gener-
ated. Notice how we use a thickness of -1, so our circles
are drawn as a solid color and not just an outline.

Our masterpiece is then shown to us on Lines 42 and 43.

You can check out our work in Figure 5.3. Notice how
each circle has a different size, color, and placement on our
canvas.

In this chapter, you were introduced to basic drawing
functions using OpenCV. We explored how to draw shapes
using the cv2.line, cv2.rectangle, and cv2.circle meth-
ods.

While these functions seem extremely basic and simple,
make sure you understand them! They are essential build-
ing blocks that will come in handy later in this book.

41

5.2 circles

Further Reading

Why are we bothering learning how to draw rectangles,
circles, and lines in a book on computer vision and im-
age processing?

Isn’t the point of computer vision to write software that
understands the contents of an image? And if so, why
in the world do we need to know how to draw various
shapes on images?
These are excellent questions – and I address each of
them (and provide examples of how drawing methods
are used in object detection and extraction) in side the
Chapter 5 supplementary material:

http://pyimg.co/rlpak

42

http://pyimg.co/rlpak

6
I M A G E P R O C E S S I N G

Now that you have a solid foundation to build upon, we
can start to exploring simple image processing techniques.

First, we’ll start off with basic image transformations,
such as translation, rotation, resizing, flipping, and crop-
ping. Then, we’ll explore other types of image processing
techniques, including image arithmetic, bitwise operations,
and masking.

Finally, we’ll explore how to split an image into its re-
spective channels and then merge them back together again.
We’ll conclude this chapter with a discussion of different
color spaces that OpenCV supports and the benefits and
limitations of each of them.

6.1 image transformations

In this section, we’ll cover basic image transformations. These
are common techniques that you’ll likely apply to images,
including translation, rotation, resizing, flipping, and crop-
ping. We’ll explore each of these techniques in detail.

43

6.1 image transformations

Make sure you have a good grasp of these methods! They
are important in nearly all areas of computer vision.

6.1.1 Translation

The first method we are going to explore is translation.
Translation is the shifting of an image along the x and y
axis. Using translation, we can shift an image up, down,
left, or right, along with any combination of the above!

This concept is better explained through some code:

Listing 6.1: translation.py

1 import numpy as np
2 import argparse
3 import imutils
4 import cv2
5

6 ap = argparse.ArgumentParser()
7 ap.add_argument("-i", "--image", required = True,
8 help = "Path to the image")
9 args = vars(ap.parse_args())

10

11 image = cv2.imread(args["image"])
12 cv2.imshow("Original", image)
13

14 M = np.float32([[1, 0, 25], [0, 1, 50]])
15 shifted = cv2.warpAffine(image, M, (image.shape[1], image.shape

[0]))
16 cv2.imshow("Shifted Down and Right", shifted)
17

18 M = np.float32([[1, 0, -50], [0, 1, -90]])
19 shifted = cv2.warpAffine(image, M, (image.shape[1], image.shape

[0]))
20 cv2.imshow("Shifted Up and Left", shifted)

On Lines 1-4, we simply import the packages we will
make use of. At this point, using numpy, argparse, and

44

6.1 image transformations

cv2 should feel commonplace already. However, I am intro-
ducing a new package here: imutils. This isn’t a package
included in NumPy or OpenCV. Rather, it’s a library that
we are going to write ourselves and create “convenience”
methods to do common tasks like translation, rotation, and
resizing.

After we have the necessary packages imported, we con-
struct our argument parser and load our image on Lines
6-12.

The actual translation takes place on Lines 14-16. We first
define our translation matrix M. This matrix tells us how
many pixels to the left or right, and up or down, the image
will be shifted.

Our translation matrix M is defined as a floating point
array – this is important because OpenCV expects this ma-
trix to be of floating point type. The first row of the matrix
is [1, 0, tx], where tx is the number of pixels we will shift
the image left or right. Negative values of tx will shift the
image to the left and positive values will shift the image to
the right.

Then, we define the second row of the matrix as [0, 1, ty],
where ty is the number of pixels we will shift the image up
or down. Negative value of ty will shift the image up and
positive values will shift the image down.

Using this notation, we can see on Line 14 that tx = 25
and ty = 50, implying that we are shifting the image 25 pix-
els to the right and 50 pixels down.

45

6.1 image transformations

Now that we have our translation matrix defined, the
actual translation takes place on Line 15 using the cv2.
warpAffine function. The first argument is the image we
wish to shift and the second argument is our translation ma-
trix M. Finally, we manually supply the dimensions (width
and height) of our image as the third argument. Line 16
shows the results of the translation.

Moving on to Lines 18-20, we perform another transla-
tion. Here, we set tx = −50 and ty = −90, implying that
we are shifting the image 50 pixels to the left and 90 pixels
up. The image is shifted left and up rather than right and
down, because we are providing a negative values for both
tx and ty.

However, manually constructing this translation matrix
and calling the cv2.warpAffine method takes a fair amount
of code – and it’s not pretty code either!

Let’s create a new file: imutils.py. This file will store ba-
sic image processing methods, allowing us to conveniently
call them without writing a lot of code.

The first method we are going to define is a translate
function:

Listing 6.2: imutils.py

1 import numpy as np
2 import cv2
3

4 def translate(image, x, y):
5 M = np.float32([[1, 0, x], [0, 1, y]])
6 shifted = cv2.warpAffine(image, M, (image.shape[1], image.

shape[0]))

46

6.1 image transformations

7

8 return shifted

Our translate method takes three parameters: the image
we are going to translate, the number of pixels that we are
going to shift along the x-axis, and the number of pixels we
are going to shift along the y-axis.

This method then defines our translation matrix M on
Line 5 and then applies the actual shift on Line 6. Finally,
we return the shifted image on Line 8.

Let’s apply our translate method and compare to the
methods discussed above:

Listing 6.3: translation.py

21 shifted = imutils.translate(image, 0, 100)
22 cv2.imshow("Shifted Down", shifted)
23 cv2.waitKey(0)

Using our convenience translate method, we are able
to shift the image 100 pixels down using a single line of
code. Furthermore, this translate method is much easier
to use – less code is required and based on the function
name, we conveniently know what image processing task
is being performed.

To see our translation in action, take a look at Figure 6.1.
Our original image is on the top-left. On the top-right, we
shift our image 25 pixels to the right and 50 pixels down.
Next, we translate our image 50 pixels to the left and 90

pixels up by using negative values for tx and ty. Finally, on
the bottom-right, we shift our T-Rex 100 pixels down using

47

6.1 image transformations

Figure 6.1: Top-Left: Our original T-Rex image.
Top-Right: Translating our image 25

pixels to the right and 50 pixels
down. Bottom-Left: Shifting T-Rex
50 pixels to the left and 90 pix-
els up. Bottom-Right: Shifting the
T-Rex down using our convenience
method.

48

6.1 image transformations

our convenient translate method defined above.

In this section we explored how to shift an image up,
down, left, and right. Next up, we’ll explore how to rotate
an image.

6.1.2 Rotation

Rotation is exactly what it sounds like: rotating an image
by some angle θ. In this section, we’ll explore how to rotate
an image. We’ll use θ to represent by how many degrees
we are rotating the image. Later, I’ll provide another con-
venience method, rotate, to make performing rotations on
images easier.

Listing 6.4: rotate.py

1 import numpy as np
2 import argparse
3 import imutils
4 import cv2
5

6 ap = argparse.ArgumentParser()
7 ap.add_argument("-i", "--image", required = True,
8 help = "Path to the image")
9 args = vars(ap.parse_args())

10

11 image = cv2.imread(args["image"])
12 cv2.imshow("Original", image)
13

14 (h, w) = image.shape[:2]
15 center = (w // 2, h // 2)
16

17 M = cv2.getRotationMatrix2D(center, 45, 1.0)
18 rotated = cv2.warpAffine(image, M, (w, h))
19 cv2.imshow("Rotated by 45 Degrees", rotated)
20

21 M = cv2.getRotationMatrix2D(center, -90, 1.0)

49

6.1 image transformations

22 rotated = cv2.warpAffine(image, M, (w, h))
23 cv2.imshow("Rotated by -90 Degrees", rotated)

Lines 1-4 again import the packages we need. You should
take note of imutils. Once again, we will be defining a con-
venience method to make our lives easier.

Lines 6-12 construct our argument parser. We only need
one argument: the path to the image we are going to use.
We then load our image off disk and display it.

When we rotate an image, we need to specify around
which point we want to rotate. In most cases, you will want
to rotate around the center of an image; however, OpenCV
allows you to specify any arbitrary point you want to rotate
around. Let’s just go ahead and rotate around the center of
the image. Lines 14 and 15 grabs the width and height of
the image, then divides each by 2 to determine the center
of the image. Integer division is used here, denoted as “//”
to ensure we receive whole integer numbers.

Just as we defined a matrix to translate an image, we
also define a matrix to rotate the image. Instead of manu-
ally constructing the matrix using NumPy, we’ll just make
a call to the cv2.getRotationMatrix2D method on Line 17.

The cv2.getRotationMatrix2D function takes three argu-
ments: the point at which we want to rotate the image
around (in this case, the center of the image). We then
specify θ, the number of degrees we are going to rotate the
image by. In this case, we are going to rotate the image 45

degrees. The last argument is the scale of the image. We
haven’t discussed resizing an image yet, but here you can
specify a floating point value, where 1.0 means the same di-

50

6.1 image transformations

mensions of the image are used. However, if you specified
a value of 2.0 the image would be doubled in size. Similarly,
a value of 0.5 halves the size of the image.

Once we have our rotation matrix M from the cv2.getRot
ationMatrix2D function, we can apply the rotation to our
image using the cv2.warpAffine method on Line 18. The
first argument to this function is the image we want to ro-
tate. We then specify our rotation matrix M along with the
output dimensions (width and height) of our image. Line
19 then shows our image rotated by 45 degrees. Check out
Figure 6.2 Top-Right to see our rotated image.

Let’s not waste any time. We’ll go ahead and jump into
some code to perform rotations:

On Lines 21-23, we perform another rotation. The code
is identical to that in Lines 17-19, only this time we are ro-
tating by -90 degrees rather than 45. Figure 6.2 Bottom-Left
shows our T-Rex rotated by -90 degrees.

Just as in translating an image, the code to rotate an im-
age isn’t the most pretty and Pythonic. Let’s change that
and define our own custom rotate method:

Listing 6.5: imutils.py

27 def rotate(image, angle, center = None, scale = 1.0):
28 (h, w) = image.shape[:2]
29

30 if center is None:
31 center = (w // 2, h // 2)
32

33 M = cv2.getRotationMatrix2D(center, angle, scale)
34 rotated = cv2.warpAffine(image, M, (w, h))

51

6.1 image transformations

Figure 6.2: Top-Left: Our original T-Rex image.
Top-Right: Rotating the image by 45

degrees. Bottom-Left: Rotating the
image by −90 degrees. Bottom-Right:
Flipping T-Rex upside down by rotat-
ing the image by 180 degrees.

52

6.1 image transformations

35

36 return rotated

Our rotate method takes four arguments. The first is
our image. The second is the angle θ in which we want
to rotate the image. We provide two optional keyword ar-
guments, center and scale. The center parameter is the
point which we wish to rotate our image around. If a value
of None is provided, the method automatically determines
the center of the image on Lines 30-31. Finally, the scale
parameter is used to handle if the size of the image should
be changed during the rotation. The scale parameter has
a default value of 1.0, implying that no resizing should be
done.

The actual rotation of the image takes place on Lines 33
and 34, where we construct our rotation matrix M and ap-
ply it to the image. Finally, our image is returned on Line
36.

Now that we have defined our rotate method, let’s apply
it:

Listing 6.6: rotate.py

24 rotated = imutils.rotate(image, 180)
25 cv2.imshow("Rotated by 180 Degrees", rotated)
26 cv2.waitKey(0)

Here, we are rotating our image by 180 degrees. Fig-
ure 6.2 Bottom-Right shows that our T-Rex has indeed been
flipped upside down. The code for our rotate method is
much easier to read and maintain than making calls to
cv2.getRotationMatrix2D and cv2.warpAffine each time
we want to rotate an image.

53

6.1 image transformations

6.1.3 Resizing

So far we’ve covered two image transformations: transla-
tion and rotation. Now, we are going to explore how to
resize an image. We’ll also define one last method for our
imutils.py file, a convenience method to help us resize im-
ages with ease.

Perhaps, not surprisingly, we will be using the cv2.resize
function to resize our images. But we need to keep in mind
the aspect ratio of the image when we are using this func-
tion. Before we get too deep into the details, let’s jump right
into an example:

Listing 6.7: resize.py

1 import numpy as np
2 import argparse
3 import imutils
4 import cv2
5

6 ap = argparse.ArgumentParser()
7 ap.add_argument("-i", "--image", required = True,
8 help = "Path to the image")
9 args = vars(ap.parse_args())

10

11 image = cv2.imread(args["image"])
12 cv2.imshow("Original", image)
13

14 r = 150.0 / image.shape[1]
15 dim = (150, int(image.shape[0] * r))
16

17 resized = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)
18 cv2.imshow("Resized (Width)", resized)

Lines 1-12 should start to feel quite redundant at this
point. We are importing our packages, setting up our argu-
ment parser, and finally loading our image and displaying

54

6.1 image transformations

it.

The actual interesting code doesn’t start until Lines 14
and 15. When resizing an image, we need to keep in mind
the aspect ratio of the image. The aspect ratio is the propor-
tional relationship of the width and the height of the image.
If we aren’t mindful of the aspect ratio, our resizing will
return results that don’t look correct.

Computing the aspect ratio is handled on Line 14. In
this line of code, we define our new image width to be 150

pixels. In order to compute the ratio of the new height to
the old height, we simply define our ratio r to be the new
width (150 pixels) divided by the old width, which we ac-
cess using image.shape[1].

Now that we have our ratio, we can compute the new di-
mensions of the image on Line 15. Again, the width of the
new image will be 150 pixels. The height is then computed
by multiplying the old height by our ratio and converting
it to an integer.

The actual resizing of the image takes place on Line 17.
The first argument is the image we wish to resize and the
second is our computed dimensions for the new image.The
last parameter is our interpolation method, which is the
algorithm working behind the scenes to handle how the
actual image is resized. In general, I find that using cv2.
INTER_AREA obtains the best results when resizing; how-
ever, other appropriate choices include cv2.INTER_LINEAR,
cv2.INTER_CUBIC, and cv2.INTER_NEAREST.

55

6.1 image transformations

Finally, we show our resized image on Line 18.

In the example we just explored, we only resized the im-
age by specifying the width. But what if we wanted to
resize the image by specifying the height? All that requires
is a change to computing the aspect ratio:

Listing 6.8: resize.py

19 r = 50.0 / image.shape[0]
20 dim = (int(image.shape[1] * r), 50)
21

22 resized = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)
23 cv2.imshow("Resized (Height)", resized)
24 cv2.waitKey(0)

On Line 19 we define our ratio r. Our new image will
have a height of 50 pixels. To determine the ratio of the new
height to the old height, we divide 50 by the old height.

Then, we define the dimensions of our new image. We
already know that the new image will have a height of 50

pixels. The new width is obtained by multiplying the old
width by the ratio.

We then perform the actual resizing of the image on Line
22 and show it on Line 23.

Resizing an image is simple enough, but having to com-
pute the aspect ratio, define the dimensions of the new im-
age, and then perform the resizing takes three lines of code.
This looks like the perfect time to define a resize method
in our imutils.py file:

Listing 6.9: resize.py

25 resized = imutils.resize(image, width = 100)

56

6.1 image transformations

26 cv2.imshow("Resized via Function", resized)
27 cv2.waitKey(0)

In this example, you can see that the resizing of the im-
age is handled by a single function: imutils.resize. The
first argument we pass in is the image we want to resize.
Then, we specify the keyword argument width, which is
the width of our new image. The function then handles the
resizing for us.

Of course, we can also resize via the height of the image
by changing the function call to:

Listing 6.10: resize.py

1 resized = imutils.resize(image, height = 50)

Let’s take this function apart and see what’s going on un-
der the hood:

Listing 6.11: imutils.py

9 def resize(image, width = None, height = None, inter = cv2.
INTER_AREA):

10 dim = None
11 (h, w) = image.shape[:2]
12

13 if width is None and height is None:
14 return image
15

16 if width is None:
17 r = height / float(h)
18 dim = (int(w * r), height)
19

20 else:
21 r = width / float(w)
22 dim = (width, int(h * r))
23

24 resized = cv2.resize(image, dim, interpolation = inter)
25

57

6.1 image transformations

26 return resized

As you can see, we have defined our resize function.
The first argument is the image we want to resize. Then, we
define two keyword arguments, width and height. Both of
these arguments cannot be None, otherwise we won’t know
how to resize the image. We also provide inter, which is
our interpolation method and defaults to cv2.INTER_AREA.

On Lines 10 and 11, we define the dimensions of our new,
resized image and grab the dimensions of the original im-
age.

We perform a quick check on Lines 13-14 to ensure that
a numerical value has been provided for either the width
or the height.

The computation of the ratio and new, resized image di-
mensions are handled on Lines 16-22, depending on whether
we are resizing via width or via height.

Line 24 handles the actual resizing of the image, then
Line 26 returns our resized image to the user.

To see the results of our image resizings, check out Fig-
ure 6.3. On the Top-Left we have our original T-Rex image.
Then, on the Top-Right we have our T-Rex resized to have a
width of 150 pixels. The Middle-Right image then shows our
image resized to have a height of 50 pixels. Finally, Bottom-
Right shows the output of our resize function – the T-Rex
is now resized to have a width of 100 pixels using only a
single line of code.

58

6.1 image transformations

Figure 6.3: Top-Left: Our original T-Rex image.
Top-Right: The T-Rex resized to have
a width of 150 pixels. Middle-Right:
Our image resized to have a height
of 50 pixels. Bottom-Right: Resizing
our image to have a width of 100 pix-
els using our helper function. In all
cases, the aspect ratio of the image is
maintained.

59

6.1 image transformations

Translation, rotation, and resizing are certainly the more
challenging and involved image transformation tasks. The
next two we will explore, flipping and cropping, are sub-
stantially easier.

6.1.4 Flipping

Next up on our image transformations to explore is flip-
ping an image. We can flip an image around either the x or
y axis, or even both.

In fact, I think explaining how to flip an image is better
explained by viewing the output of an image flip, before
we get into the code. Check out Figure 6.4 to see our T-Rex
image flipped horizontally, vertically, and both horizontally
and vertically at the same time.

Now that you see what an image flip looks like, we can
explore the code:

Listing 6.12: flipping.py

1 import argparse
2 import cv2
3

4 ap = argparse.ArgumentParser()
5 ap.add_argument("-i", "--image", required = True,
6 help = "Path to the image")
7 args = vars(ap.parse_args())
8

9 image = cv2.imread(args["image"])
10 cv2.imshow("Original", image)
11

12 flipped = cv2.flip(image, 1)
13 cv2.imshow("Flipped Horizontally", flipped)
14

60

6.1 image transformations

Figure 6.4: Top-Left: Our original T-Rex image.
Top-Right: Flipping the T-Rex image
horizontally. Bottom-Left: Flipping
the T-Rex vertically. Bottom-Right:
Flipping the image both horizontally
and vertically.

61

6.1 image transformations

15 flipped = cv2.flip(image, 0)
16 cv2.imshow("Flipped Vertically", flipped)
17

18 flipped = cv2.flip(image, -1)
19 cv2.imshow("Flipped Horizontally & Vertically", flipped)
20 cv2.waitKey(0)

Lines 1-10 handle our standard procedure of importing
our packages, parsing arguments, and loading our image
from disk.

Flipping an image is accomplished by making a call to
the cv2.flip function on Line 12. The cv2.flip method
requires two arguments: the image we want to flip and a
flip code that is used to determine how we are going to flip
the image.

Using a flip code value of 1 indicates that we are going
to flip the image horizontally, around the y-axis (Line 12).
Specifying a flip code of 0 indicates that we want to flip the
image vertically, around the x-axis (Line 15). Finally, using
a negative flip code (Line 18) flips the image around both
axes.

Again, to see the output of our flipping example, take a
look at Figure 6.4. Here we can see the image flipped hori-
zontally, vertically, and around both axes.

Flipping an image is very simple, perhaps one of the sim-
plest examples in this book! Next up, we’ll go over crop-
ping an image and how to extract regions of an image using
NumPy array slices.

62

6.1 image transformations

Figure 6.5: Top: Our original T-Rex image. Bot-
tom: Cropping the face of the T-Rex
using NumPy array slices.

6.1.5 Cropping

When we crop an image, we want to remove the outer parts
of the image that we are not interested in. We can accom-
plish image cropping by using NumPy array slicing. In fact,
we already performed image cropping in Chapter 4!

However, let’s review it again and make sure we under-
stand what is going on:

Listing 6.13: crop.py

1 import numpy as np
2 import argparse
3 import cv2
4

5 ap = argparse.ArgumentParser()

63

6.1 image transformations

6 ap.add_argument("-i", "--image", required = True,
7 help = "Path to the image")
8 args = vars(ap.parse_args())
9

10 image = cv2.imread(args["image"])
11 cv2.imshow("Original", image)
12

13 cropped = image[30:120 , 240:335]
14 cv2.imshow("T-Rex Face", cropped)
15 cv2.waitKey(0)

Lines 1-11 handle importing our packages, parsing our
arguments, and loading our images. For our cropping ex-
ample, we will use our T-Rex image.

The actual cropping takes place on a single line of code:
Line 13. We are supplying NumPy array slices to extract
a rectangular region of the image, starting at (240, 30) and
ending at (335, 120). The order in which we supply the
indexes to the crop may seem counterintuitive; however, re-
member that OpenCV represents images as NumPy arrays
with the the height first and the width second. This means
that we need to supply our y-axis values before our x-axis.

In order to perform our cropping, NumPy expects four
indexes:

1. Start y: The starting y coordinate. In this case, we
start at y = 30.

2. End y: The ending y coordinate. We will end our crop
at y = 120.

3. Start x: The starting x coordinate of the slice. We start
the crop at x = 240.

64

6.2 image arithmetic

4. End x: The ending x-axis coordinate of the slice. Our
slice ends at x = 335.

Executing our code detailed above, we will see from Fig-
ure 6.5 that we have cropped out the face of our T-Rex!
While the T-Rex might seem a little scary, cropping sure
isn’t! In fact, it’s quite simple when you consider all we are
doing is performing array slices on NumPy arrays.

6.2 image arithmetic

We all know basic arithmetic operations like addition and
subtraction. But when working with images, we need to
keep in mind the limits of our color space and data type.

For example, RGB images have pixels that fall within the
range [0, 255]. So what happens if we are examining a pixel
with intensity 250 and we try to add 10 to it?

Under normal arithmetic rules, we would end up with a
value of 260. However, since RGB images are represented
as 8-bit unsigned integers, 260 is not a valid value.

So, what should happen? Should we perform a check
of some sort to ensure no pixel falls outside the range of
[0, 255], thus clipping all pixels to have a minimum value of
0 and a maximum value of 255?

Or do we apply a modulus operation, and “wrap around”?
Under modulus rules, adding 10 to 250 would simply wrap
around to a value of 4.

65

6.2 image arithmetic

Which way is the “correct” way to handle image addi-
tions and subtractions that fall outside the range of [0, 255]?

The answer is there is no correct way – it simply depends
on how you are manipulate your pixels and what you want
the desired results to be.

However, be sure to keep in mind that there is a differ-
ence between OpenCV and NumPy addition. NumPy will
perform modulo arithmetic and “wrap around”. OpenCV,
on the other hand, will perform clipping and ensure pixel
values never fall outside the range [0, 255].

But don’t worry! These nuances will become clearer as
we explore some code below.

Listing 6.14: arithmetic.py

1 from __future__ import print_function
2 import numpy as np
3 import argparse
4 import cv2
5

6 ap = argparse.ArgumentParser()
7 ap.add_argument("-i", "--image", required = True,
8 help = "Path to the image")
9 args = vars(ap.parse_args())

10

11 image = cv2.imread(args["image"])
12 cv2.imshow("Original", image)
13

14 print("max of 255: {}".format(cv2.add(np.uint8([200]), np.uint8
([100]))))

15 print("min of 0: {}".format(cv2.subtract(np.uint8([50]), np.uint8
([100]))))

16

17 print("wrap around: {}".format(np.uint8([200]) + np.uint8([100]))
)

18 print("wrap around: {}".format(np.uint8([50]) - np.uint8([100])))

66

6.2 image arithmetic

We are going to perform our standard procedure on Lines
1-12 by importing our packages, setting up our argument
parser, and loading our image.

Remember how I mentioned the difference between OpenCV
and NumPy addition above? Well, now we are going to ex-
plore it further and provide a concrete example to ensure
we fully understand it.

On Line 14, we define two NumPy arrays that are 8-
bit unsigned integers. The first array has one element: a
value of 200. The second array also has only one element,
but with a value of 100. We then use OpenCV’s cv2.add
method to add the values together.

What do you think the output is going to be?

Well, according to standard arithmetic rules, we would
think the result should be 300, but, remember that we are
working with 8-bit unsigned integers that only have a range
between [0, 255]. Since we are using the cv2.add method,
OpenCV takes care of clipping for us, and ensures that the
addition produces a maximum value of 255. When we ex-
ecute this code, we can see the result on the first line of
Listing 6.15. Sure enough, the addition returned a value of
255.

Line 15 then performs subtraction using cv2.subtract.
Again, we define two NumPy arrays, each with a single ele-
ment, and of the 8-bit unsigned integer data type. The first
array has a value of 50 and the second a value of 100.

67

6.2 image arithmetic

According to our arithmetic rules, the subtraction should
return a value of −50; however, OpenCV once again per-
forms clipping for us. We find that the value is clipped to a
value of 0. The second line of Listing 6.15 verifies this: sub-
tracting 100 from 50 using cv2.subtract returns a value of
0.

Listing 6.15: arithmetic.py

max of 255: [[255]]
min of 0: [[0]]

But what happens if we use NumPy to perform the arith-
metic instead of OpenCV?

Line 17 and 18 explore this question.

First, we define two NumPy arrays, each with a single
element, and of the 8-bit unsigned integer data type. The
first array has a value of 200, and the second has a value
of 100. Using the cv2.add function, our addition would be
clipped and a value of 255 returned.

However, NumPy does not perform clipping – it instead
performs modulo arithmetic and “wraps around”. Once a
value of 255 is reached, NumPy wraps around to zero, and
then starts counting up again, until 100 steps have been
reached. You can see this is true via the first line of output
on Listing 6.16.

Then, we define two more NumPy arrays: one has a value
of 50 and the other 100. Using the cv2.subtract method,
this subtraction would be clipped to return a value of 0.
However, we know that NumPy performs modulo arith-

68

6.2 image arithmetic

metic rather than clipping. Instead, once 0 is reached dur-
ing the subtraction, the modulos operations wraps around
and starts counting backwards from 255 – thus the result
on the second line of output on Listing 6.16.

Listing 6.16: arithmetic.py

wrap around: [44]
wrap around: [206]

When performing integer arithmetic, it is important to
keep in mind your desired output.

Do you want all values to be clipped if they fall outside
the range [0, 255]? Then use OpenCV’s built-in methods for
image arithmetic.

Do you want modulus arithmetic operations and have
values wrap around if they fall outside the range of [0, 255]?
Then simply add and subtract the NumPy arrays as you
normally would.

Now that we have explored the caveats of image arith-
metic in OpenCV and NumPy, let’s perform the arithmetic
on actual images and view the results:

Listing 6.17: arithmetic.py

19 M = np.ones(image.shape, dtype = "uint8") * 100
20 added = cv2.add(image, M)
21 cv2.imshow("Added", added)
22

23 M = np.ones(image.shape, dtype = "uint8") * 50
24 subtracted = cv2.subtract(image, M)
25 cv2.imshow("Subtracted", subtracted)
26 cv2.waitKey(0)

69

6.2 image arithmetic

Figure 6.6: Top-Left: Our original T-Rex image.
Top-Right: Adding 100 to every pixel
in the image. Notice how the image
looks more “washed out” and is sub-
stantially brighter than the original.
Bottom: Subtracting 50 from every
pixel in the image. Notice that the
image is now darker than the origi-
nal.

70

6.2 image arithmetic

Line 19 defines a NumPy array of ones, with the same
size as our image. Again, we are sure to use 8-bit unsigned
integers as our data type. In order to fill our matrix with
values of 100’s rather than 1’s, we simply multiply our ma-
trix of 1’s by 100. Finally, we use the cv2.add function to
add our matrix of 100’s to the original image – thus increas-
ing every pixel intensity in the image by 100, but ensuring
all values are clipped to the range [0, 255] if they attempt to
exceed 255.

The result of our operation can be found in Figure 6.6
Top-Right. Notice how the image looks more “washed out”
and is substantially brighter than the original. This is be-
cause we are increasing the pixel intensities by adding 100
to them and pushing them towards brighter colors.

We then create another NumPy array filled with 50’s on
Line 24 and use the cv2.subtract function to subtract 50
from each pixel intensity of the image. The Bottom image
in Figure 6.6 shows the results of this subtraction. Our im-
age now looks considerably darker than the original T-Rex.
Pixels that were once white now look gray. This is because
we are subtracting 50 from the pixels and pushing them to-
wards the darker regions of the RGB color space.

In this section, we explored the peculiarities of image
arithmetic using OpenCV and NumPy. These caveats are
important to keep in mind, otherwise you may get unwanted
results when performing arithmetic operations on your im-
ages.

71

6.3 bitwise operations

6.3 bitwise operations

Now we will review four bitwise operations: AND, OR,
XOR, and NOT. These four operations, while very basic
and low level, are paramount to image processing, espe-
cially when we start working with masks in Section 6.4.

Bitwise operations operate in a binary manner and are
represented as grayscale images. A given pixel is turned
“off” if it has a value of zero, and it is turned “on” if the
pixel has a value greater than zero.

Let’s go ahead and jump into some code:

Listing 6.18: bitwise.py

1 import numpy as np
2 import cv2
3

4 rectangle = np.zeros((300, 300), dtype = "uint8")
5 cv2.rectangle(rectangle, (25, 25), (275, 275), 255, -1)
6 cv2.imshow("Rectangle", rectangle)
7

8 circle = np.zeros((300, 300), dtype = "uint8")
9 cv2.circle(circle, (150, 150), 150, 255, -1)

10 cv2.imshow("Circle", circle)

The first two lines of code import the packages we will
need: numpy and cv2. We initialize our rectangle image
as a 300 × 300 NumPy array on Line 4. We then draw a
250 × 250 white rectangle at the center of the image.

Similarly, on Line 8, we initialize another image to con-
tain our circle, which we draw on Line 9, again centered at
the center of the image, with a radius of 150 pixels.

72

6.3 bitwise operations

Figure 6.7: Left: Our rectangle image. Right: Our
circle image. We will explore how
these two images can be combined
using bitwise operations.

Figure 6.7 shows our two shapes. We will make use of
these shapes to demonstrate our bitwise operations:

Listing 6.19: bitwise.py

11 bitwiseAnd = cv2.bitwise_and(rectangle, circle)
12 cv2.imshow("AND", bitwiseAnd)
13 cv2.waitKey(0)
14

15 bitwiseOr = cv2.bitwise_or(rectangle, circle)
16 cv2.imshow("OR", bitwiseOr)
17 cv2.waitKey(0)
18

19 bitwiseXor = cv2.bitwise_xor(rectangle, circle)
20 cv2.imshow("XOR", bitwiseXor)
21 cv2.waitKey(0)
22

23 bitwiseNot = cv2.bitwise_not(circle)
24 cv2.imshow("NOT", bitwiseNot)
25 cv2.waitKey(0)

73

6.3 bitwise operations

As I mentioned above, a given pixel is turned “on” if it
has a value greater than zero, and it is turned “off” if it has
a value of zero. Bitwise functions operate on these binary
conditions.

In order to utilize bitwise functions, we assume (in most
cases) that we are comparing two pixels (the only exception
is the NOT function). We’ll compare each of the pixels and
then construct our bitwise representation.

Let’s quickly review our binary operations:

1. AND: A bitwise AND is true if and only if both pixels
are greater than zero.

2. OR: A bitwise OR is true if either of the two pixels
are greater than zero.

3. XOR: A bitwise XOR is true if and only if either of the
two pixels are greater than zero, but not both.

4. NOT: A bitwise NOT inverts the “on” and “off” pixels
in an image.

On Line 11 we apply a bitwise AND to our rectangle and
circle images using the cv2.bitwise_and function. As the
list above mentions, a bitwise AND is true if and only if
both pixels are greater than zero. The output of our bitwise
AND can be seen in Figure 6.8 Top-Left. We can see that
edges of our square are lost – this makes sense because our
rectangle does not cover as large of an area as the circle,
and thus both pixels are not “on”.

74

6.4 masking

We then apply a bitwise OR on Line 15 using the cv2.
bitwise_or function. A bitwise OR is true if either of the
two pixels are greater than zero. Figure 6.8 Top-Right shows
the output of our bitwise OR. In this case, our square and
rectangle have been combined together.

Next up is the bitwise XOR function, applied on Line 19
using the cv2.bitwise_xor function. An XOR operation
is true if both pixels are greater than zero, but both pixels
cannot be greater than zero. The output of the XOR oper-
ation is displayed on Figure 6.8 Bottom-Right. Here we see
that the center of the square has been removed. Again, this
makes sense because an XOR operation cannot have both
pixels greater than zero.

Finally, we apply the NOT function on Line 23 using the
cv2.bitwise_not function. Essentially, the bitwise NOT
function flips pixel values. All pixels that are greater than
zero are set to zero, and all pixels that are set to zero are
set to 255. Figure 6.8 Bottom-Right flips our white circle to a
black circle.

Overall, bitwise functions are extremely simple, yet very
powerful. And they are absolutely essential when we start
to discuss masking in Section 6.4.

6.4 masking

In the previous section, we explored bitwise functions. Now
we are ready to explore masking, an extremely powerful
and useful technique in computer vision and image pro-

75

6.4 masking

Figure 6.8: Top-Left: Applying a bitwise AND to
our rectangle and circle image. Top-
Right: A bitwise OR applied to our
square and circle. Bottom-Left: An
XOR applied to our shapes. Bottom-
Right: Flipping pixel values of our
circle using a bitwise NOT.

76

6.4 masking

cessing.

Using a mask allows us to focus only on the portions of
the image that interests us.

For example, let’s say that we were building a computer
vision system to recognize faces. The only part of the image
we are interested in finding and describing are the parts of
the image that contain faces – we simply don’t care about
the rest of the content of the image. Provided that we could
find the faces in the image, we might construct a mask to
show only the faces in the image.

Let’s make this example a little more concrete.

In Figure 6.9, we have an image of a beach on the Top-Left.
But I’m not interested in the beach in the image. I’m only
interested in the sky and the palm tree. We could apply a
cropping to extract that region of the image. Or, we could
apply a mask to the image.

The image on the Top-Right is our mask – a white rectan-
gle at the center of the image. Applying our mask to our
beach image, we arrive at the image on the Bottom. By us-
ing our rectangle mask, we have focused only on the sky
and palm tree in the image.

Let’s examine the code to accomplish the masking in Fig-
ure 6.9:

Listing 6.20: masking.py

1 import numpy as np

77

6.4 masking

Figure 6.9: Top-Left: Our image of a peaceful
beach scene. Top-Right: Our mask im-
age – a white rectangle at the center
of the image. Bottom: Applying the
rectangular mask to the beach image.
Only the parts of the image where
the mask pixels are greater than zero
are shown.

78

6.4 masking

2 import argparse
3 import cv2
4

5 ap = argparse.ArgumentParser()
6 ap.add_argument("-i", "--image", required = True,
7 help = "Path to the image")
8 args = vars(ap.parse_args())
9

10 image = cv2.imread(args["image"])
11 cv2.imshow("Original", image)
12

13 mask = np.zeros(image.shape[:2], dtype = "uint8")
14 (cX, cY) = (image.shape[1] // 2, image.shape[0] // 2)
15 cv2.rectangle(mask, (cX - 75, cY - 75), (cX + 75 , cY + 75), 255,

-1)
16 cv2.imshow("Mask", mask)
17

18 masked = cv2.bitwise_and(image, image, mask = mask)
19 cv2.imshow("Mask Applied to Image", masked)
20 cv2.waitKey(0)

On Lines 1-11 we import the packages we need, parse
our arguments, and load our image.

We then construct a NumPy array, filled with zeros, with
the same width and height as our beach image on Line 13.
In order to draw the white rectangle, we first compute the
center of the image on Line 14 by dividing the width and
height by two, using the // operator to indicate integer divi-
sion. Finally, we draw our white rectangle on Line 15.

Remember reviewing the cv2.bitwise_and function in
the previous section? It’s a function that is used extensively
when applying masks to images.

We apply our mask on Line 18 using the cv2.bitwise_
and function. The first two parameters are the image it-
self. Obviously, the AND function will be True for all pix-
els in the image; however, the important part of this func-

79

6.4 masking

tion is the mask keyword argument. By supplying a mask,
the cv2.bitwise_and function only examines pixels that are
“on” in the mask. In this case, only pixels that are part of
the white rectangle.

Let’s look at another example:

Listing 6.21: masking.py

21 mask = np.zeros(image.shape[:2], dtype = "uint8")
22 cv2.circle(mask, (cX, cY), 100, 255, -1)
23 masked = cv2.bitwise_and(image, image, mask = mask)
24 cv2.imshow("Mask", mask)
25 cv2.imshow("Mask Applied to Image", masked)
26 cv2.waitKey(0)

On Line 21 we re-initialize our mask to be filled with ze-
ros and the same dimensions as our beach image. Then, we
draw a white circle on our mask image, starting at the cen-
ter of the image and a radius of 100 pixels. Applying the
circular mask is then performed on Line 23, again using the
cv2.bitwise_and function.

The results of our circular mask can be seen in Figure
6.10. Our beach image is shown on the Top-Left, our circle
mask on the Top-Right, and the application of the mask on
the Bottom. Instead of a rectangular region of the beach be-
ing shown, we now have a circular region.

Right now masking may not seem very interesting. But
we’ll return to it once we start computing histograms in
Chapter 7. Again, the key point of masks is that they allow
us to focus our computation only on regions of the image
that interests us.

80

6.4 masking

Figure 6.10: Applying the circular mask to the
beach image. Only pixels within
the circular white region are shown.

81

6.5 splitting and merging channels

6.5 splitting and merging channels

A color image consists of multiple channels: a Red, a Green,
and a Blue component. We have seen that we can access
these components via indexing into NumPy arrays. But
what if we wanted to split an image into its respective com-
ponents?

As you’ll see, we’ll make use of the cv2.split function.

For the time being, let’s take a look at a sample image in
Figure 6.11.

We have an image of a wave crashing down. This image
is very “blue” due to the ocean. How do we interpret the
different channels of the image?

The Red channel (Top-Left) is very dark. This makes sense,
because an ocean scene has very few red colors in it. The
red colors present are either very dark, and thus not repre-
sented, or very light, and likely part of the white foam of
the wave as it crashes down.

The Green channel (Top-Right) is more represented in the
image, since ocean water does contain greenish hues.

Finally, the Blue channel (Bottom-Left) is extremely light,
and near pure white in some locations. This is because
shades of blue are heavily represented in our image.

Now that we have visualized our channels, let’s examine
some code to accomplish this for us:

82

6.5 splitting and merging channels

Figure 6.11: The three RGB channels of our
wave image are shown on the
Bottom-Right. The Red channel is on
the Top-Left, the Green channel on
the Top-Right, and the Blue channel
on the Bottom-Left.

83

6.5 splitting and merging channels

Listing 6.22: splitting_and_merging.py

1 import numpy as np
2 import argparse
3 import cv2
4

5 ap = argparse.ArgumentParser()
6 ap.add_argument("-i", "--image", required = True,
7 help = "Path to the image")
8 args = vars(ap.parse_args())
9

10 image = cv2.imread(args["image"])
11 (B, G, R) = cv2.split(image)
12

13 cv2.imshow("Red", R)
14 cv2.imshow("Green", G)
15 cv2.imshow("Blue", B)
16 cv2.waitKey(0)
17

18 merged = cv2.merge([B, G, R])
19 cv2.imshow("Merged", merged)
20 cv2.waitKey(0)
21 cv2.destroyAllWindows()

Lines 1-10 imports our packages, sets up our argument
parser, and then loads our image. Splitting the channels is
done using a call to cv2.split on Line 11.

Normally, we think of images in the RGB color space –
the red pixel first, the green pixel second, and the blue pixel
third. However, OpenCV stores RGB images as NumPy ar-
rays in reverse channel order. Instead of storing an image
in RGB order, it instead stores the image in BGR order; thus
we unpack the tuple in reverse order.

Lines 13-16 then show each channel individually, as in
Figure 6.11.

We can also merge the channels back together again us-
ing the cv2.merge function. We simply specify our chan-

84

6.5 splitting and merging channels

Figure 6.12: Representing the Red, Green, and
Blue channels of our wave image.

nels, again in BGR order, and then cv2.merge takes care of
the rest for us (Line 18).

Listing 6.23: splitting_and_merging.py

22 zeros = np.zeros(image.shape[:2], dtype = "uint8")
23 cv2.imshow("Red", cv2.merge([zeros, zeros, R]))
24 cv2.imshow("Green", cv2.merge([zeros, G, zeros]))
25 cv2.imshow("Blue", cv2.merge([B, zeros, zeros]))
26 cv2.waitKey(0)

An alternative method to visualize the channels of an im-
age can be seen in Figure 6.12. In order to show the actual
“color” of the channel, we first need to take apart the image
using cv2.split. Then, we need to re-construct the image,
but this time setting all pixels but the current channel as zero.

On Line 22 we construct a NumPy array of zeros, with
the same width and height as our original image. Then, in
order to construct the Red channel representation of the im-
age, we make a call to cv2.merge, but specifying our zeros
array for the Green and Blue channels. We take similar ap-
proaches to the other channels in Line 24 and 25.

85

6.6 color spaces

6.6 color spaces

In this book, we have only explored the RGB color space;
however, there are many other color spaces that we can uti-
lize.

The Hue-Saturation-Value (HSV) color space is more sim-
ilar to how humans think and conceive of color. Then there
is the L*a*b* color space, which is more tuned to how hu-
mans perceive color.

OpenCV provides support for many, many different color
spaces. And understanding how color is perceived by hu-
mans and represented by computers occupies an entire li-
brary of literature itself.

In order to not get bogged down in the details, I’ll just
show you how to convert color spaces. If you think your
application of image processing and computer vision might
need a different color space than RGB, I will leave that as
an exercise to the reader to explore the peculiarities of each
color space.

Let’s explore some code to change color spaces:

Listing 6.24: colorspaces.py

1 import numpy as np
2 import argparse
3 import cv2
4

5 ap = argparse.ArgumentParser()
6 ap.add_argument("-i", "--image", required = True,
7 help = "Path to the image")
8 args = vars(ap.parse_args())

86

6.6 color spaces

9

10 image = cv2.imread(args["image"])
11 cv2.imshow("Original", image)
12

13 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
14 cv2.imshow("Gray", gray)
15

16 hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
17 cv2.imshow("HSV", hsv)
18

19 lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
20 cv2.imshow("L*a*b*", lab)
21 cv2.waitKey(0)

Lines 1-11 imports the packages we need, parses our ar-
guments, and loads our image. Then, on Line 13, we con-
vert our image from the RGB color space to grayscale by
specifying the cv2.COLOR_BGR2GRAY flag.

Converting our image to the HSV color space is performed
on Line 16 by specifying the cv2.COLOR_BGR2HSV flag. Fi-
nally, on Line 19, we convert to the L*a*b* color space by
using the cv2.COLOR_BGR2LAB flag.

We can see the results of our color space conversions in
Figure 6.13.

The role of color spaces in image processing and com-
puter vision is important, yet complicated at the same time.
If you are just getting started in computer vision, it’s likely
a good idea to stick to the RGB color space for the time
being. However, I have included this section as a matter
of completeness – it’s good to show an example of how to
convert color spaces for when you decide the time is right!

87

6.6 color spaces

Figure 6.13: Top-Left: An image of beach scenery.
Top-Right: The grayscale represen-
tation of the beach image. Bottom-
Left: Converting the beach image to
the HSV color space. Bottom-Right:
Converting our image to the L*a*b*
color space.

88

6.6 color spaces

Further Reading

Chapter 6 is by far the longest chapter in Practical Python
and OpenCV – and with good reason. In this chapter,
we covered a lot of important image processing con-
cepts that form the foundation on which the rest of
your computer vision education will be built.

To ensure that you have a thorough grasp on these con-
cepts, be sure to go through the Chapter 6 supplemen-
tary material:

http://pyimg.co/s3fm7

89

http://pyimg.co/s3fm7

7

H I S T O G R A M S

So, what exactly is a histogram? A histogram represents
the distribution of pixel intensities (whether color or gray-
scale) in an image. It can be visualized as a graph (or plot)
that gives a high-level intuition of the intensity (pixel value)
distribution. We are going to assume an RGB color space in
this example, so these pixel values will be in the range of 0

to 255.

When plotting the histogram, the X-axis serves as our
“bins”. If we construct a histogram with 256 bins, then
we are effectively counting the number of times each pixel
value occurs. In contrast, if we use only 2 (equally spaced)
bins, then we are counting the number of times a pixel is in
the range [0, 128) or [128, 255]. The number of pixels binned
to the x-axis value is then plotted on the y-axis.

By simply examining the histogram of an image, you get
a general understanding regarding the contrast, brightness,

90

7.1 using opencv to compute histograms

and intensity distribution.

7.1 using opencv to compute histograms

Now, let’s start building some histograms of our own.

We will be using the cv2.calcHist function to build our
histograms. Before we get into any code examples, let’s
quickly review the function:

cv2.calcHist(images,channels,mask,histSize,ranges)

1. images: This is the image that we want to compute a
histogram for. Wrap it as a list: [myImage].

2. channels: This is a list of indexes, where we specify
the index of the channel we want to compute a his-
togram for. To compute a histogram of a grayscale
image, the list would be [0]. To compute a histogram
for all three red, green, and blue channels, the chan-
nels list would be [0,1,2].

3. mask: Remember learning about masks in Chapter
6? Well, here we can supply a mask. If a mask is
provided, a histogram will be computed for masked
pixels only. If we do not have a mask or do not want
to apply one, we can just provide a value of None.

4. histSize: This is the number of bins we want to use
when computing a histogram. Again, this is a list, one
for each channel we are computing a histogram for.
The bin sizes do not all have to be the same. Here is
an example of 32 bins for each channel: [32,32,32].

91

7.2 grayscale histograms

5. ranges: Here we specify The range of possible pixel
values. Normally, this is [0, 256] for each channel, but
if you are using a color space other than RGB (such as
HSV), the ranges might be different.

Next up, we’ll use the cv2.calcHist function to compute
our first histogram.

7.2 grayscale histograms

Now that we have an understanding of the cv2.calcHist
function, let’s write some actual code.

Listing 7.1: grayscale_histogram.py

1 from matplotlib import pyplot as plt
2 import argparse
3 import cv2
4

5 ap = argparse.ArgumentParser()
6 ap.add_argument("-i", "--image", required = True,
7 help = "Path to the image")
8 args = vars(ap.parse_args())
9

10 image = cv2.imread(args["image"])

This code isn’t very exciting yet. All we are doing is
importing the packages we will need, setting up an argu-
ment parser, and loading our image. We’ll make use of the
matplotlib package to make plotting our histograms eas-
ier.

Listing 7.2: grayscale_histogram.py

13 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
14 cv2.imshow("Original", image)

92

7.2 grayscale histograms

15

16 hist = cv2.calcHist([image], [0], None, [256], [0, 256])
17

18 plt.figure()
19 plt.title("Grayscale Histogram")
20 plt.xlabel("Bins")
21 plt.ylabel("# of Pixels")
22 plt.plot(hist)
23 plt.xlim([0, 256])
24 plt.show()
25 cv2.waitKey(0)

Now things are getting a little more interesting. On Line
13, we convert the image from the RGB colorspace to graysc-
ale. Line 16 computes the actual histogram. Go ahead and
match the arguments of the code up with the function docu-
mentation above. We can see that our first parameter is the
grayscale image. A grayscale image has only one channel,
hence we have a value of [0] for channels. We don’t have
a mask, so we set the mask value to None. We will use 256

bins in our histogram, and the possible values range from
0 to 256.

Finally, a call to plt.plot() plots our grayscale histogram,
the results of which can be seen in Figure 7.1.

Not bad. How do we interpret this histogram? Well, the
bins (0-255) are plotted on the x-axis. And the y-axis counts
the number of pixels in each bin. The majority of the pixels
fall in the range of roughly 60 to 120. Looking at the right
tail of the histogram, we see very few pixels in the range
200 to 255. This means that there are very few “white” pix-
els in the image.

93

7.3 color histograms

Figure 7.1: Computing a grayscale histogram of
our beach image.

7.3 color histograms

In the previous section, we explored grayscale histograms.
Now let’s move on to computing a histogram for each chan-
nel of the image.

Listing 7.3: color_histograms.py

1 from __future__ import print_function
2 from matplotlib import pyplot as plt
3 import numpy as np
4 import argparse
5 import cv2
6

7 ap = argparse.ArgumentParser()
8 ap.add_argument("-i", "--image", required = True,
9 help = "Path to the image")

10 args = vars(ap.parse_args())
11

12 image = cv2.imread(args["image"])
13 cv2.imshow("Original", image)

94

7.3 color histograms

Again, we’ll import the packages that we’ll need, utiliz-
ing matplotlib once more to plot the histograms.

Let’s examine some code:

Listing 7.4: color_histograms.py

14 chans = cv2.split(image)
15 colors = ("b", "g", "r")
16 plt.figure()
17 plt.title("’Flattened’ Color Histogram")
18 plt.xlabel("Bins")
19 plt.ylabel("# of Pixels")
20

21 for (chan, color) in zip(chans, colors):
22 hist = cv2.calcHist([chan], [0], None, [256], [0, 256])
23 plt.plot(hist, color = color)
24 plt.xlim([0, 256])

The first thing we are going to do is split the image into
its three channels: blue, green, and red. Normally, we read
this is red, green, blue (RGB). However, OpenCV stores the
image as a NumPy array in reverse order: BGR. This is
important to note. We then initialize a tuple of strings rep-
resenting the colors. We take care of all this on Lines 14-15.

On Lines 16-19 we set up our PyPlot figure. We’ll plot
the bins on the x-axis and the number of pixels placed into
each bin on the y-axis.

We then reach a for loop on Line 21, where we start loop-
ing over each of the channels in the image.

Then, for each channel, we compute a histogram on Line
22. The code is identical to that of computing a histogram
for the grayscale image; however, we are doing it for each
Red, Green, and Blue channel, allowing us to characterize

95

7.3 color histograms

Figure 7.2: Color histograms for each Red,
Green, and Blue channel of the beach
image.

the distribution of pixel intensities. We add our histogram
to the plot on Line 23.

We can examine our color histogram in Figure 7.2. We
see there is a sharp peak in the green histogram around bin
100. This indicates a darker green value, from the green
vegetation and trees in the beach image.

We also see a lot of blue pixels in the range 170 to 225.
Considering these pixels are much lighter, we know that
they are from the blue sky in our beach image. Similarly,
we see a much smaller range of blue pixels in the range 25

to 50 – these pixels are much darker, and are therefore the
ocean pixels in the bottom-left corner of the image.

Up until this point, we have computed a histogram for
only one channel at a time. Now we move on to multi-
dimensional histograms and take into consideration two

96

7.3 color histograms

channels at a time.

I like to explain multi-dimensional histograms by using
the word AND.

For example, we can ask a question such as, “How many
pixels have a Red value of 10 AND a Blue value of 30?”.
How many pixels have a Green value of 200 AND a Red
value of 130? By using the conjunctive AND, we are able to
construct multi-dimensional histograms.

It’s that simple. Let’s check out some code to automate
the process of building a 2D histogram:

Listing 7.5: color_histograms.py

25 fig = plt.figure()
26

27 ax = fig.add_subplot(131)
28 hist = cv2.calcHist([chans[1], chans[0]], [0, 1], None,
29 [32, 32], [0, 256, 0, 256])
30 p = ax.imshow(hist, interpolation = "nearest")
31 ax.set_title("2D Color Histogram for G and B")
32 plt.colorbar(p)
33

34 ax = fig.add_subplot(132)
35 hist = cv2.calcHist([chans[1], chans[2]], [0, 1], None,
36 [32, 32], [0, 256, 0, 256])
37 p = ax.imshow(hist, interpolation = "nearest")
38 ax.set_title("2D Color Histogram for G and R")
39 plt.colorbar(p)
40

41 ax = fig.add_subplot(133)
42 hist = cv2.calcHist([chans[0], chans[2]], [0, 1], None,
43 [32, 32], [0, 256, 0, 256])
44 p = ax.imshow(hist, interpolation = "nearest")
45 ax.set_title("2D Color Histogram for B and R")
46 plt.colorbar(p)
47

48 print("2D histogram shape: {}, with {} values".format(

97

7.3 color histograms

49 hist.shape, hist.flatten().shape[0]))

Yes, this is a fair amount of code. But that’s only because
we are computing a 2D color histogram for each combina-
tion of RGB channels: Red and Green, Red and Blue, and
Green and Blue.

Now that we are working with multi-dimensional his-
tograms, we need to keep in mind the number of bins we
are using. In previous examples, I’ve used 256 bins for
demonstration purposes. However, if we used a 256 bins for
each dimension in a 2D histogram, our resulting histogram
would have 256 × 256 = 65, 536 separate pixel counts. Not
only is this wasteful of resources, it’s not practical. Most
applications use somewhere between 8 and 64 bins when
computing multi-dimensional histograms. As Lines 28 and
29 show, I am now using 32 bins instead of 256.

The most important takeaway from this code can be seen
by inspecting the first arguments to the cv2.calcHist func-
tion. Here we see that we are passing in a list of two chan-
nels: the Green and Blue channels. And that’s all there is
to it.

So, how is a 2D histogram stored in OpenCV? It’s actually
a 2D NumPy array. Since I used 32 bins for each channel, I
now have a 32 × 32 histogram.

How do we visualize a 2D histogram? Let’s take a look
at Figure 7.3 where we see three graphs. The first is a 2D
color histogram for the Green and Blue channels, the sec-
ond for Green and Red, and the third for Blue and Red.
Shades of blue represent low pixel counts, whereas shades

98

7.3 color histograms

Figure 7.3: Computing 2D color histograms for
each combination of Red, Green, and
Blue channels.

of red represent large pixel counts (i.e., peaks in the 2D his-
togram). We tend to see many peaks in the Green and Blue
histogram, where x = 22 and y = 12. This corresponds to
the green pixels of the vegetation and trees and the blue of
the sky and ocean.

Using a 2D histogram takes into account two channels at
a time. But what if we wanted to account for all three RGB
channels? You guessed it. We’re now going to build a 3D
histogram.

Listing 7.6: color_histograms.py

50 hist = cv2.calcHist([image], [0, 1, 2],
51 None, [8, 8, 8], [0, 256, 0, 256, 0, 256])
52 print("3D histogram shape: {}, with {} values".format(
53 hist.shape, hist.flatten().shape[0]))
54

55 plt.show()

99

7.4 histogram equalization

The code here is very simple – it’s just an extension of the
code above. We are now computing an 8 × 8 × 8 histogram
for each of the RGB channels. We can’t visualize this his-
togram, but we can see that the shape is indeed (8,8,8)
with 512 values.

7.4 histogram equalization

Histogram equalization improves the contrast of an image
by “stretching” the distribution of pixels. Consider a his-
togram with a large peak at the center of it. Applying his-
togram equalization will stretch the peak out towards the
corner of the image, thus improving the global contrast of
the image. Histogram equalization is applied to grayscale
images.

This method is useful when an image contains foregroun-
ds and backgrounds that are both dark or both light. It
tends to produce unrealistic effects in photographs; how-
ever, it is normally useful when enhancing the contrast of
medical or satellite images.

Regardless whether you are applying histogram equaliza-
tion to a photograph, a satellite image, or an X-ray, we first
need to see some code so we can understand what is going
on:

Listing 7.7: equalize.py

1 import numpy as np
2 import argparse
3 import cv2
4

100

7.4 histogram equalization

Figure 7.4: Left: The original beach image. Right:
The beach image after applying his-
togram equalization.

5 ap = argparse.ArgumentParser()
6 ap.add_argument("-i", "--image", required = True,
7 help = "Path to the image")
8 args = vars(ap.parse_args())
9

10 image = cv2.imread(args["image"])
11 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
12

13 eq = cv2.equalizeHist(image)
14

15 cv2.imshow("Histogram Equalization", np.hstack([image, eq]))
16 cv2.waitKey(0)

Lines 1-10 handle our standard practice of importing pack-
ages, parsing arguments, and loading our image. We then
convert our image to grayscale on Line 11.

Performing histogram equalization is done using just a
single function: cv2.equalizeHist, which accepts a single
parameter, the grayscale image we want to perform his-
togram equalization on. The last couple lines of code dis-
play our histogram equalized image.

101

7.5 histograms and masks

The result of applying histogram equalization can be seen
in Figure 7.4. On the left, we have our original beach image.
Then, on the right, we have our histogram-equalized beach
image. Notice how the contrast of the image has been radi-
cally changed and now spans the entire range of [0, 255].

7.5 histograms and masks

In Chapter 6, Section 6.4, I mentioned that masks can be
used to focus on specific regions of an image that interest
us. We are now going to construct a mask and compute
color histograms for the masked region only.

First, we need to define a convenience function to save us
from writing repetitive lines of code:

Listing 7.8: histogram_with_mask.py

1 from matplotlib import pyplot as plt
2 import numpy as np
3 import argparse
4 import cv2
5

6 def plot_histogram(image, title, mask = None):
7 chans = cv2.split(image)
8 colors = ("b", "g", "r")
9 plt.figure()

10 plt.title(title)
11 plt.xlabel("Bins")
12 plt.ylabel("# of Pixels")
13

14 for (chan, color) in zip(chans, colors):
15 hist = cv2.calcHist([chan], [0], mask, [256], [0, 256])
16 plt.plot(hist, color = color)
17 plt.xlim([0, 256])

102

7.5 histograms and masks

On Lines 1-4 we import our packages; then on Line 6 we
define plot_histogram. This function accepts three param-
eters: an image, the title of our plot, and a mask. The mask
defaults to None if we do not have a mask for the image.

The body of our plot_histogram function simply com-
putes a histogram for each channel in the image and plots
it, just as in previous examples in this chapter.

Now that we have a function to help us easily plot his-
tograms, let’s move into the bulk of our code:

Listing 7.9: histogram_with_mask.py

18 ap = argparse.ArgumentParser()
19 ap.add_argument("-i", "--image", required = True,
20 help = "Path to the image")
21 args = vars(ap.parse_args())
22

23 image = cv2.imread(args["image"])
24 cv2.imshow("Original", image)
25 plot_histogram(image, "Histogram for Original Image")

Lines 18-21 parse our command line arguments. Then
we load our beach image on Line 23 and plot a histogram
for each channel of the beach image on Line 25. The plot
for our image can be seen in Figure 7.5. We will refer to
this histogram again once we compute a histogram for the
masked region.

Listing 7.10: histogram_with_mask.py

26 mask = np.zeros(image.shape[:2], dtype = "uint8")
27 cv2.rectangle(mask, (15, 15), (130, 100), 255, -1)
28 cv2.imshow("Mask", mask)
29

30 masked = cv2.bitwise_and(image, image, mask = mask)
31 cv2.imshow("Applying the Mask", masked)

103

7.5 histograms and masks

Figure 7.5: Left: The original beach image. Right:
Color histograms for the red, green,
and blue channels. Compare these
histograms to the histograms of the
masked region of blue sky in Figure
7.7.

104

7.5 histograms and masks

Figure 7.6: Left: Our rectangular mask. Right:
Applying our mask to the beach im-
age using a bitwise AND. Now we
see only the blue sky – the rest of the
image is ignored.

Now we are ready to construct a mask for the image. We
define our mask as a NumPy array, with the same width
and height as our beach image on Line 26. We then draw a
white rectangle starting from point (15, 15) to point (130, 100)
on Line 27. This rectangle will serve as our mask – only pix-
els in our original image belonging to the masked region
will be considered in the histogram computation.

To visualize our mask, we apply a bitwise AND to the
beach image (Line 30), the results of which can be seen in
Figure 7.6. Notice how the image on the left is simply a
white rectangle, but when we apply our mask to the beach
image, we only see the blue sky (right).

Listing 7.11: histogram_with_mask.py

32 plot_histogram(image, "Histogram for Masked Image", mask = mask)

105

7.5 histograms and masks

33

34 plt.show()

Finally, we compute a histogram for our masked image
using our plot_histogram function and show our results
(Lines 32-34).

We can see our masked histogram in Figure 7.7. Most
red pixels fall in the range [0, 80], indicating that red pixels
contribute very little to our image. This makes sense, since
our sky is blue. Green pixels are then present, but again,
are towards the darker end of the RGB spectrum. Finally,
our blue pixels fall in the brighter range and are obviously
our blue sky.

Most importantly, compare our masked color histograms
in Figure 7.5 to the unmasked color histograms in Figure
7.7 above. Notice how dramatically different the color his-
tograms are. By utilizing masks, we are able to apply our
computation only to the specific regions of the image that
interest us – in this example, we simply wanted to examine
the distribution of the blue sky.

In this chapter, you have learned all about histograms.
Histograms are simple, but are used extensively in image
processing and computer vision. Make sure you have a
good grasp of histograms; you’ll certainly be using them in
the future!

106

7.5 histograms and masks

Figure 7.7: The resulting histogram of the
masked image in Figure 7.6. Red
contributes little to our image and is
towards the darker end of the spec-
trum. Some lighter green values are
present, and many light blue colors
correspond to the sky in the image.

107

7.5 histograms and masks

Further Reading

The purpose of Chapter 7 was to learn how to extract
and visualize color histograms from an image. But
other than simply visualizing the color distributions of
an image, what else can we do? What are the actual
applications of utilizing color histograms?

To learn how to compare color histograms for similar-
ity, and even build an image search engine, take a look
at the Chapter 7 supplementary page:

http://pyimg.co/aa4ax

108

http://pyimg.co/aa4ax

8
S M O O T H I N G A N D B L U R R I N G

I’m pretty sure we all know what blurring is. It’s what
happens when your camera takes a picture out of focus.
Sharper regions in the image lose their detail, normally as
a disc/circular shape.

Practically, this means that each pixel in the image is
mixed in with its surrounding pixel intensities. This “mix-
ture” of pixels in a neighborhood becomes our blurred pixel.

While this effect is usually unwanted in our photographs,
it’s actually quite helpful when performing image process-
ing tasks.

In fact, many image processing and computer vision func-
tions, such as thresholding and edge detection, perform bet-
ter if the image is first smoothed or blurred.

In order to explore different types of blurring methods,
let’s start with a baseline of our original T-Rex image in Fig-
ure 8.1.

Listing 8.1: blurring.py

109

smoothing and blurring

Figure 8.1: Our original T-Rex image before ap-
plying any blurring effects.

1 import numpy as np
2 import argparse
3 import cv2
4

5 ap = argparse.ArgumentParser()
6 ap.add_argument("-i", "--image", required = True,
7 help = "Path to the image")
8 args = vars(ap.parse_args())
9

10 image = cv2.imread(args["image"])
11 cv2.imshow("Original", image)

In order to perform image blurring, we first need to im-
port our packages and parse our arguments (Lines 1-8). We
then load our image and show it as a baseline to compare
our blurring methods to on Lines 10 and 11.

110

8.1 averaging

Now that our image is loaded, we can start blurring our
images.

8.1 averaging

The first blurring method we are going to explore is averag-
ing.

As the name suggests, we are going to define a k × k slid-
ing window on top of our image, where k is always an odd
number. This window is going to slide from left-to-right
and from top-to-bottom. The pixel at the center of this ma-
trix (we have to use an odd number, otherwise there would
not be a true “center”) is then set to be the average of all
other pixels surrounding it.

We call this sliding window a “convolution kernel” or
just a “kernel”. We’ll continue to use this terminology throu-
ghout this chapter.

As we will see, as the size of the kernel increases, the
more blurred our image will become.

Let’s check out some code to perform average blurring:

Listing 8.2: blurring.py

12 blurred = np.hstack([
13 cv2.blur(image, (3, 3)),
14 cv2.blur(image, (5, 5)),
15 cv2.blur(image, (7, 7))])
16 cv2.imshow("Averaged", blurred)
17 cv2.waitKey(0)

111

8.1 averaging

Figure 8.2: Performing averaging blurring with
a 3× 3 kernel (left), 5× 5 kernel (mid-
dle), and 7 × 7 kernel (right).

In order to average blur an image, we use the cv2.blur
function. This function requires two arguments: the image
we want to blur and the size of the kernel. As Lines 13-15
show, we blur our image with increasing-sized kernels. The
larger our kernel becomes, the more blurred our image will
appear.

We make use of the np.hstack function to stack our out-
put images together. This method “horizontally stacks” our
three images into a row. This is useful since we don’t want
to create three separate windows using the cv2.imshow func-
tion.

The output of our averaged blur can be seen in Figure 8.2.
The image on the left is barely blurred, but by the time we
reach a kernel of size 7 × 7, we see that our T-Rex is very
blurry indeed. Perhaps he was running at a high speed and
chasing a jeep?

112

8.2 gaussian

Figure 8.3: Performing Gaussian blurring with a
3 × 3 kernel (left), 5 × 5 kernel (mid-
dle), and 7 × 7 kernel (right). Again,
our image becomes more blurred as
the kernel size increases, but is less
blurred than the average method in
Figure 8.2.

8.2 gaussian

Next up, we are going to review Gaussian blurring. Gaus-
sian blurring is similar to average blurring, but instead of
using a simple mean, we are now using a weighted mean,
where neighborhood pixels that are closer to the central
pixel contribute more “weight” to the average.

The end result is that our image is less blurred, but more
naturally blurred, than using the average method discussed
in the previous section.

Let’s look at some code to perform Gaussian blurring:

Listing 8.3: blurring.py

18 blurred = np.hstack([
19 cv2.GaussianBlur(image, (3, 3), 0),

113

8.3 median

20 cv2.GaussianBlur(image, (5, 5), 0),
21 cv2.GaussianBlur(image, (7, 7), 0)])
22 cv2.imshow("Gaussian", blurred)
23 cv2.waitKey(0)

Here you can see that we are making use of the cv2.
GaussianBlur function on Lines 19-21. The first argument
to the function is the image we want to blur. Then, simi-
lar to cv2.blur, we provide a tuple representing our kernel
size. Again, we start with a small kernel size of 3 × 3 and
start to increase it.

The last parameter is our σ, the standard deviation in the
x-axis direction. By setting this value to 0, we are instruct-
ing OpenCV to automatically compute them based on our
kernel size.

We can see the output of our Gaussian blur in Figure 8.3.
Our images have less of a blur effect than when using the
averaging method in Figure 8.2; however, the blur itself is
more natural due to the computation of the weighted mean,
rather than allowing all pixels in the kernel neighborhood
to have equal weight.

8.3 median

Traditionally, the median blur method has been most ef-
fective when removing salt-and-pepper noise. This type of
noise is exactly what it sounds like: imagine taking a photo-
graph, putting it on your dining room table, and sprinkling
salt and pepper on top of it. Using the median blur method,
you could remove the salt and pepper from your image.

114

8.3 median

When applying a median blur, we first define our kernel
size k. Then, as in the averaging blurring method, we con-
sider all pixels in the neighborhood of size k× k. But, unlike
the averaging method, instead of replacing the central pixel
with the average of the neighborhood, we instead replace
the central pixel with the median of the neighborhood.

Median blurring is more effective at removing salt-and-
pepper style noise from an image because each central pixel
is always replaced with a pixel intensity that exists in the
image.

Averaging and Gaussian methods can compute means or
weighted means for the neighborhood – this average pixel
intensity may or may not be present in the neighborhood.
But by definition, the median pixel must exist in our neigh-
borhood. By replacing our central pixel with a median
rather than an average, we can substantially reduce noise.

Now, it’s time to apply our median blur:

Listing 8.4: blurring.py

24 blurred = np.hstack([
25 cv2.medianBlur(image, 3),
26 cv2.medianBlur(image, 5),
27 cv2.medianBlur(image, 7)])
28 cv2.imshow("Median", blurred)
29 cv2.waitKey(0)

Applying a median blur is accomplished by making a call
to the cv2.medianBlur function. This method takes two pa-
rameters: the image we want to blur and the size of our
kernel. On Lines 25-27, we start off with a kernel size of
3, then increase it to 5 and 7. The resulting blurred images

115

8.3 median

Figure 8.4: Applying the median blur method to
our T-Rex image with increasing ker-
nel sizes of 3 (left), 5 (middle), and
7 (right), respectively. Notice that
we are no longer creating a “motion
blur”.

are then stacked and displayed to us.

Our median blurred images can be seen in Figure 8.4.
Notice that we are no longer creating a “motion blur” ef-
fect like in averaging and Gaussian blurring – instead, we
are removing detail and noise.

For example, take a look at the color of the scales of the
T-Rex. As our kernel size increases, the scales become less
pronounced. The black and brown stripes on the legs and
tail of the T-Rex especially lose their detail, all without cre-
ating a motion blur.

116

8.4 bilateral

8.4 bilateral

The last method we are going to explore is bilateral blur-
ring.

Thus far, the intention of our blurring methods has been
to reduce noise and detail in an image; however, we tend to
lose edges in the image.

In order to reduce noise while still maintaining edges, we
can use bilateral blurring. Bilateral blurring accomplishes
this by introducing two Gaussian distributions.

The first Gaussian function only considers spatial neigh-
bors, that is, pixels that appear close together in the (x, y)
coordinate space of the image. The second Gaussian then
models the pixel intensity of the neighborhood, ensuring
that only pixels with similar intensity are included in the
actual computation of the blur.

Overall, this method is able to preserve edges of an im-
age, while still reducing noise. The largest downside to this
method is that it is considerably slower than its averaging,
Gaussian, and median blurring counterparts.

Let’s look at some code:

Listing 8.5: blurring.py

30 blurred = np.hstack([
31 cv2.bilateralFilter(image, 5, 21, 21),
32 cv2.bilateralFilter(image, 7, 31, 31),
33 cv2.bilateralFilter(image, 9, 41, 41)])
34 cv2.imshow("Bilateral", blurred)
35 cv2.waitKey(0)

117

8.4 bilateral

Figure 8.5: Applying Bilateral blurring to our
beach image. As the diameter of the
neighborhood, color σ, and space σ

increases (from left to right), our im-
age has noise removed, yet still re-
tains edges and does not appear to
be “motion blurred”.

We apply bilateral blurring by calling the cv2.bilateralFil
ter function on Lines 31-33. The first parameter we supply
is the image we want to blur. Then, we need to define the
diameter of our pixel neighborhood. The third argument
is our color σ. A larger value for color σ means that more
colors in the neighborhood will be considered when com-
puting the blur. Finally, we need to supply the space σ. A
larger value of space σ means that pixels farther out from
the central pixel will influence the blurring calculation, pro-
vided that their colors are similar enough.

We obtain three separate results by increasing the neigh-
borhood sizes, color σ, and space σ. These results can be
seen in Figure 8.5. As the size of our parameters increases,
our image has noise removed, yet the edges still remain.

118

8.4 bilateral

Now that we know how to blur our images, we can move
on to thresholding in the next chapter. You can be sure that
we’ll make use of blurring throughout the rest of this book!

Further Reading

One topic that I didn’t get a chance to cover in detail in-
side Practical Python and OpenCV is the convolution op-
eration. Whether you are smoothing an image, sharp-
ening details, or detecting edges, convolutions are being
applied.

To learn more convolutions, and the role they play in
computer vision, image processing, and deep learning,
be sure to refer to the Chapter 8 supplementary mate-
rial:

http://pyimg.co/y454z

119

http://pyimg.co/y454z

9

T H R E S H O L D I N G

Thresholding is the binarization of an image. In general,
we seek to convert a grayscale image to a binary image,
where the pixels are either 0 or 255.

A simple thresholding example would be selecting a pixel
value p, and then setting all pixel intensities less than p to
zero, and all pixel values greater than p to 255. In this way,
we are able to create a binary representation of the image.

Normally, we use thresholding to focus on objects or ar-
eas of particular interest in an image. In the examples in the
sections below, we will empty our pockets and look at our
spare change. Using thresholding methods, we’ll be able to
find the coins in an image.

9.1 simple thresholding

Applying simple thresholding methods requires human in-
tervention. We must specify a threshold value T. All pixel
intensities below T are set to 0. And all pixel intensities
greater than T are set to 255.

120

9.1 simple thresholding

We can also apply the inverse of this binarization by set-
ting all pixels below T to 255 and all pixel intensities greater
than T to 0.

Let’s explore some code to apply simple thresholding
methods:

Listing 9.1: simple_thresholding.py

1 import numpy as np
2 import argparse
3 import cv2
4

5 ap = argparse.ArgumentParser()
6 ap.add_argument("-i", "--image", required = True,
7 help = "Path to the image")
8 args = vars(ap.parse_args())
9

10 image = cv2.imread(args["image"])
11 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
12 blurred = cv2.GaussianBlur(image, (5, 5), 0)
13 cv2.imshow("Image", image)

On Lines 1-10 we import our packages, parse our argu-
ments, and load our image. From there, we convert the
image from the RGB color space to grayscale on Line 11.

At this point, we apply Gaussian blurring on Line 12
with a σ = 5 radius. Applying Gaussian blurring helps re-
move some of the high frequency edges in the image that
we are not concerned with.

Listing 9.2: simple_thresholding.py

14 (T, thresh) = cv2.threshold(blurred, 155, 255, cv2.THRESH_BINARY)
15 cv2.imshow("Threshold Binary", thresh)
16

17 (T, threshInv) = cv2.threshold(blurred, 155, 255, cv2.
THRESH_BINARY_INV)

121

9.1 simple thresholding

Figure 9.1: Top-Left: The original coins image in
grayscale. Top-Right: Applying sim-
ple binary thresholding. The coins
are shown in black and the back-
ground in white. Bottom-Left: Apply-
ing inverse binary thresholding. The
coins are now white and the back-
ground is black. Bottom-Right: Ap-
plying the inverse binary threshold
as a mask to the grayscale image. We
are now focused on only the coins in
the image.

122

9.1 simple thresholding

18 cv2.imshow("Threshold Binary Inverse", threshInv)
19

20 cv2.imshow("Coins", cv2.bitwise_and(image, image, mask =
threshInv))

21 cv2.waitKey(0)

After the image is blurred, we compute the thresholded
image on Line 14 using the cv2.threshold function. This
method requires four arguments. The first is the grayscale
image that we wish to threshold. We supply our blurred
image here.

Then, we manually supply our T threshold value. We
use a value of T = 155.

Our third argument is our maximum value applied dur-
ing thresholding. Any pixel intensity p that is greater than
T, is set to this value. In our example, any pixel value that
is greater than 155 is set to 255. Any value that is less than
155 is set to zero.

Finally, we must provide a thresholding method. We use
the cv2.THRESH_BINARY method, which indicates that pixel
values p greater than T are set to the maximum value (the
third argument).

The cv2.threshold function returns two values. The first
is T, the value we manually specified for thresholding. The
second is our actual thresholded image.

We then show our thresholded image in Figure 9.1, Top-
Right. We can see that our coins are now black pixels and
the white pixels are the background.

123

9.2 adaptive thresholding

On Line 17 we apply inverse thresholding rather than
normal thresholding by using cv2.THRESH_BINARY_INV as
our thresholding method. As we can see in Figure 9.1,
Bottom-Left, our coins are now white and the background
is black. This is convenient as we will see in a second.

The last task we are going to perform is to reveal the
coins in the image and hide everything else.

Remember when we discussed masking? That will come
in handy here.

On Line 20 we perform masking by using the cv2.bitwise_
and function. We supply our original coin image as the first
two arguments, and then our inverted thresholded image as
our mask. Remember, a mask only considers pixels in the
original image where the mask is greater than zero. Since
our inverted thresholded image on Line 17 does a good job
at approximating the areas the coins are contained in, we
can use this inverted thresholded image as our mask.

Figure 9.1, Bottom-Right, shows the result of applying our
mask – the coins are clearly revealed while the rest of the
image is hidden.

9.2 adaptive thresholding

One of the downsides of using simple thresholding meth-
ods is that we need to manually supply our threshold value
T. Not only does finding a good value of T require a lot of
manual experiments and parameter tunings, it’s not very

124

9.2 adaptive thresholding

Figure 9.2: Left: The grayscale coins image. Mid-
dle: Applying adaptive thresholding
using mean neighborhood values.
Right: Applying adaptive threshold-
ing using Gaussian neighborhood
values.

helpful if the image exhibits a lot of range in pixel intensi-
ties.

Simply put, having just one value of T might not suffice.

In order to overcome this problem, we can use adap-
tive thresholding, which considers small neighbors of pixels
and then finds an optimal threshold value T for each neigh-
bor. This method allows us to handle cases where there
may be dramatic ranges of pixel intensities and the optimal
value of T may change for different parts of the image.

Let’s go ahead and jump into some code that applies
adaptive thresholding:

125

9.2 adaptive thresholding

Listing 9.3: adaptive_thresholding.py

1 import numpy as np
2 import argparse
3 import cv2
4

5 ap = argparse.ArgumentParser()
6 ap.add_argument("-i", "--image", required = True,
7 help = "Path to the image")
8 args = vars(ap.parse_args())
9

10 image = cv2.imread(args["image"])
11 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
12 blurred = cv2.GaussianBlur(image, (5, 5), 0)
13 cv2.imshow("Image", image)
14

15 thresh = cv2.adaptiveThreshold(blurred, 255,
16 cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 4)
17 cv2.imshow("Mean Thresh", thresh)
18

19 thresh = cv2.adaptiveThreshold(blurred, 255,
20 cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 15, 3)
21 cv2.imshow("Gaussian Thresh", thresh)
22 cv2.waitKey(0)

Lines 1-10 once again handle setting up our example. We
import our packages, construct our argument parser, and
load the image. Just as in our simple thresholding example
above, we then convert the image to grayscale and blur it
slightly on Lines 11 and 12.

We then apply adaptive thresholding to our blurred im-
age using the cv2.adaptiveThreshold function on Line 15.
The first parameter we supply is the image we want to
threshold. Then, we supply our maximum value of 255,
similar to simple thresholding mentioned above.

The third argument is our method to compute the thresh-
old for the current neighborhood of pixels. By supplying
cv2.ADAPTIVE_THRESH_MEAN_C, we indicate that we want to
compute the mean of the neighborhood of pixels and treat

126

9.2 adaptive thresholding

it as our T value.

Next, we need our thresholding method. Again, the de-
scription of this parameter is identical to the simple thresh-
olding method mentioned above. We use cv2.THRESH_BINAR
Y_INV to indicate that any pixel intensity greater than T in
the neighborhood should be set to 255, otherwise it should
be set to 0.

The next parameter is our neighborhood size. This inte-
ger value must be odd and indicates how large our neigh-
borhood of pixels is going to be. We supply a value of 11,
indicating that we are going to examine 11 × 11 pixel re-
gions of the image, instead of trying to threshold the image
globally, as in simple thresholding methods.

Finally, we supply a parameter simply called C. This
value is an integer that is subtracted from the mean, allow-
ing us to fine-tune our thresholding. We use C = 4 in this
example.

The results of applying mean weighted adaptive thresh-
olding can be seen in the middle image of Figure 9.2.

Besides applying standard mean thresholding, we can
also apply Gaussian (weighted mean) thresholding, as we
do on Line 19. The order of the parameters are identical to
Line 15, but now we are tuning a few of the values.

Instead of supplying a value of cv2.ADAPTIVE_THRESH_
MEAN_C, we instead use cv2.ADAPTIVE_THRESH_GAUSSIAN_C
to indicate we want to use the weighted mean. We are
also using a 15 × 15 pixel neighborhood size rather than

127

9.3 otsu and riddler-calvard

an 11 × 11 neighborhood size as in the previous example.
We also alter our C value (the value we subtract from the
mean) slightly and use 3 rather than 4.

The results of applying Gaussian adaptive thresholding
can be seen in the right image of Figure 9.2. There is little
difference between the two images.

In general, choosing between mean adaptive threshold-
ing and Gaussian adaptive thresholding requires a few ex-
periments on your end. The most important parameters
to vary are the neighborhood size and C, the value you
subtract from the mean. By experimenting with this value,
you will be able to dramatically change the results of your
thresholding.

9.3 otsu and riddler-calvard

Another way we can automatically compute the threshold
value of T is to use Otsu’s method.

Otsu’s method assumes there are two peaks in the grayscale
histogram of the image. It then tries to find an optimal
value to separate these two peaks – thus our value of T.

While OpenCV provides support for Otsu’s method, I
prefer the implementation by Luis Pedro Coelho in the mahotas
package since it is more Pythonic.

Let’s jump into some sample code:

128

9.3 otsu and riddler-calvard

Listing 9.4: otsu_and_riddler.py

1 from __future__ import print_function
2 import numpy as np
3 import argparse
4 import mahotas
5 import cv2
6

7 ap = argparse.ArgumentParser()
8 ap.add_argument("-i", "--image", required = True,
9 help = "Path to the image")

10 args = vars(ap.parse_args())
11

12 image = cv2.imread(args["image"])
13 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
14 blurred = cv2.GaussianBlur(image, (5, 5), 0)
15 cv2.imshow("Image", image)
16

17 T = mahotas.thresholding.otsu(blurred)
18 print("Otsu’s threshold: {}".format(T))

On Lines 1-5 we import the packages we will utilize. We
have seen numpy, argparse, and cv2 before. We are now
introducing mahotas, another image processing package.

Lines 7-12 then handle our standard practice of parsing
arguments and loading our image.

As in previous thresholding examples, we convert the im-
age to grayscale and then blur it slightly.

To compute our optimal value of T, we use the otsu func-
tion in the mahotas.thresholding package. As our output
will later show us, Otsu’s method finds a value of T = 137
that we will use for thresholding.

Listing 9.5: otsu_and_riddler.py

19 thresh = image.copy()
20 thresh[thresh > T] = 255

129

9.3 otsu and riddler-calvard

21 thresh[thresh < 255] = 0
22 thresh = cv2.bitwise_not(thresh)
23 cv2.imshow("Otsu", thresh)
24

25 T = mahotas.thresholding.rc(blurred)
26 print("Riddler-Calvard: {}".format(T))
27 thresh = image.copy()
28 thresh[thresh > T] = 255
29 thresh[thresh < 255] = 0
30 thresh = cv2.bitwise_not(thresh)
31 cv2.imshow("Riddler-Calvard", thresh)
32 cv2.waitKey(0)

Applying the thresholding is accomplished on Lines 19-
22. First, we make a copy of our grayscale image so that we
have an image to threshold. Line 20 then makes any values
greater than T white, whereas Line 21 makes all remaining
pixels that are not white into black pixels. We then invert
our threshold by using cv2.bitwise_not. This is equivalent
to applying a cv2.THRESH_BINARY_INV thresholding type as
in previous examples in this chapter.

The results of Otsu’s method can be seen in the middle
image of Figure 9.3. We can clearly see that the coins in the
image have been highlighted.

Another method to keep in mind when finding optimal
values for T is the Riddler-Calvard method. Just as in
Otsu’s method, the Riddler-Calvard method also computes
an optimal value of 137 for T. We apply this method on
Line 25 using the rc function in mahotas.thresholding. Fi-
nally, the actual thresholding of the image takes place on
Lines 27-30, as in the previous example. Given that the
values of T are identical for Otsu and Riddler-Calvard, the
thresholded image in Figure 9.3 (right) is identical to the
thresholded image in the center.

130

9.3 otsu and riddler-calvard

Figure 9.3: Left: The original grayscale coins
image. Middle: Applying Otsu’s
method to find an optimal value of T.
Right: Applying the Riddler-Calvard
method to find an optimal value of
T.

Listing 9.6: otsu_and_riddler.py

Otsu’s threshold: 137
Riddler-Calvard: 137

Now that we have explored thresholding, we will move
on to another powerful image processing technique – edge
detection.

131

9.3 otsu and riddler-calvard

Further Reading

Thresholding is often used as a method to segment the
foreground of an image from the background. This
works fine for foreground objects that can be cleanly
segmented. But what if your foreground objects “touch”,
thereby making segmentation more difficult. What do
you do then?

The answer is to apply the watershed algorithm, which I
cover inside the Chapter 9 supplementary material:

http://pyimg.co/z1ef6

132

http://pyimg.co/z1ef6

10
G R A D I E N T S A N D E D G E D E T E C T I O N

This chapter is primarily concerned with gradients and
edge detection. Formally, edge detection embodies math-
ematical methods to find points in an image where the
brightness of pixel intensities changes distinctly.

The first thing we are going to do is find the “gradient” of
the grayscale image, allowing us to find edge-like regions
in the x and y direction.

We’ll then apply Canny edge detection, a multi-stage pro-
cess of noise reduction (blurring), finding the gradient of
the image (utilizing the Sobel kernel in both the horizon-
tal and vertical direction), non-maximum suppression, and
hysteresis thresholding.

If that sounds like a mouthful, it’s because it is. Again,
we won’t jump too far into the details since this book is con-
cerned with practical examples of computer vision; how-
ever, if you are interested in the mathematics behind gradi-
ents and edge detection, I encourage you to read up on the
algorithms. Overall, they are not complicated and can be

133

10.1 laplacian and sobel

Figure 10.1: Left: The original coins image.
Right: Applying the Laplacian
method to obtain the gradient of the
image.

insightful to the behind-the-scenes action of OpenCV.

10.1 laplacian and sobel

Let’s go ahead and explore some code:

Listing 10.1: sobel_and_laplacian.py

1 import numpy as np
2 import argparse
3 import cv2
4

5 ap = argparse.ArgumentParser()
6 ap.add_argument("-i", "--image", required = True,
7 help = "Path to the image")
8 args = vars(ap.parse_args())
9

10 image = cv2.imread(args["image"])
11 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
12 cv2.imshow("Original", image)

134

10.1 laplacian and sobel

13

14 lap = cv2.Laplacian(image, cv2.CV_64F)
15 lap = np.uint8(np.absolute(lap))
16 cv2.imshow("Laplacian", lap)
17 cv2.waitKey(0)

Lines 1-8 import our packages and set up our argument
parser. From there, we load our image and convert it to
grayscale on Lines 10 and 11. When computing gradients
and edges, we (normally) compute them on a single chan-
nel – in this case, we are using the grayscale image; how-
ever, we can also compute gradients for each channel of
the RGB image. For the sake of simplicity, let’s stick with
the grayscale image since that is what you will use in most
cases.

On Line 14, we use the Laplacian method to compute the
gradient magnitude image by calling the cv2.Laplacian
function. The first argument is our grayscale image – the
image we want to compute the gradient magnitude repre-
sentation for. The second argument is our data type for the
output image.

Throughout this book, we have mainly used 8-bit un-
signed integers. Why are we using a 64-bit float now?

The reason involves the transition of black-to-white and
white-to-black in the image.

Transitioning from black-to-white is considered a posi-
tive slope, whereas a transition from white-to-black is a
negative slope. If you remember our discussion of image
arithmetic in Chapter 6, you’ll know that an 8-bit unsigned
integer does not represent negative values. Either it will be
clipped to zero if you are using OpenCV or a modulus op-

135

10.1 laplacian and sobel

eration will be performed using NumPy.

The short answer here is that if you don’t use a floating
point data type when computing the gradient magnitude
image, you will miss edges, specifically the white-to-black
transitions.

In order to ensure you catch all edges, use a floating point
data type, then take the absolute value of the gradient im-
age and convert it back to an 8-bit unsigned integer, as in
Line 15. This is definitely an important technique to take
note of – otherwise you’ll be missing edges in your image!

To see the results of our gradient processing, take a look
at Figure 10.1.

Let’s move on to computing the Sobel gradient represen-
tation:

Listing 10.2: sobel_and_laplacian.py

18 sobelX = cv2.Sobel(image, cv2.CV_64F, 1, 0)
19 sobelY = cv2.Sobel(image, cv2.CV_64F, 0, 1)
20

21 sobelX = np.uint8(np.absolute(sobelX))
22 sobelY = np.uint8(np.absolute(sobelY))
23

24 sobelCombined = cv2.bitwise_or(sobelX, sobelY)
25

26 cv2.imshow("Sobel X", sobelX)
27 cv2.imshow("Sobel Y", sobelY)
28 cv2.imshow("Sobel Combined", sobelCombined)
29 cv2.waitKey(0)

Using the Sobel operator, we can compute gradient mag-
nitude representations along the x and y axis, allowing us

136

10.1 laplacian and sobel

Figure 10.2: Top-Left: The original coins image.
Top-Right: Computing the Sobel gra-
dient magnitude along the x-axis
(finding vertical edges). Bottom-
Left: Computing the Sobel gradient
along the y-axis (finding horizontal
edges). Bottom-Right: Applying a
bitwise OR to combine the two So-
bel representations.

137

10.1 laplacian and sobel

to find both horizontal and vertical edge-like regions.

In fact, that’s exactly what Lines 18 and 19 do by us-
ing the cv2.Sobel method. The first argument to the Sobel
operator is the image we want to compute the gradient rep-
resentation for. Then, just like in the Laplacian example
above, we use a floating point data type. The last two argu-
ments are the order of the derivatives in the x and y direc-
tion, respectively. Specify a value of 1 and 0 to find vertical
edge-like regions and 0 and 1 to find horizontal edge-like
regions

On Lines 21 and 22 we then ensure we find all edges by
taking the absolute value of the floating point image and
then converting it to an 8-bit unsigned integer.

In order to combine the gradient images in both the x
and y direction, we can apply a bitwise OR. Remember, an
OR operation is true when either pixel is greater than zero.
Therefore, a given pixel will be True if either a horizontal
or vertical edge is present.

Finally, we show our gradient images on Lines 26-29.

You can see the result of our work in Figure 10.2. We
start with our original image, Top-Left, and then find vertical
edges, Top-Right, and horizontal edges, Bottom-Left. Finally,
we compute a bitwise OR to combine the two directions
into a single image, Bottom-Right.

One thing you’ll notice is that the edges are very “noisy”.
They are not clean and crisp. We’ll remedy that by using

138

10.2 canny edge detector

Figure 10.3: Left: Our coins image in grayscale
and blurred slightly. Right: Apply-
ing the Canny edge detector to the
blurred image to find edges. No-
tice how our edges are more “crisp”
and the outlines of the coins are
found.

the Canny edge detector in the next section.

10.2 canny edge detector

The Canny edge detector is a multi-step process. It involves
blurring the image to remove noise, computing Sobel gradi-
ent images in the x and y direction, suppressing edges, and
finally a hysteresis thresholding stage that determines if a
pixel is “edge-like” or not.

139

10.2 canny edge detector

We won’t get into all these steps in detail. Instead, we’ll
just look at some code and show how it’s done:

Listing 10.3: canny.py

1 import numpy as np
2 import argparse
3 import cv2
4

5 ap = argparse.ArgumentParser()
6 ap.add_argument("-i", "--image", required = True,
7 help = "Path to the image")
8 args = vars(ap.parse_args())
9

10 image = cv2.imread(args["image"])
11 image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
12 image = cv2.GaussianBlur(image, (5, 5), 0)
13 cv2.imshow("Blurred", image)
14

15 canny = cv2.Canny(image, 30, 150)
16 cv2.imshow("Canny", canny)
17 cv2.waitKey(0)

The first thing we do is import our packages and parse
our arguments. We then load our image, convert it to graysc-
ale, and blur it using the Gaussian blurring method. By ap-
plying a blur prior to edge detection, we will help remove
“noisy” edges in the image that are not of interest to us.
Our goal here is to find only the outlines of the coins.

Applying the Canny edge detector is performed on Line
15 using the cv2.Canny function. The first argument we
supply is our blurred, grayscale image. Then, we need to
provide two values: threshold1 and threshold2.

Any gradient value larger than threshold2 is considered
to be an edge. Any value below threshold1 is consid-
ered not to be an edge. Values in between threshold1
and threshold2 are either classified as edges or non-edges

140

10.2 canny edge detector

based on how their intensities are “connected”. In this case,
any gradient values below 30 are considered non-edges wh-
ereas any values above 150 are considered edges.

We then show the results of our edge detection on Line
16.

Figure 10.3 shows the results of the Canny edge detector.
The image on the left is the grayscale, blurred image that
we pass into the Canny operator. The image on the right is
the result of applying the Canny operator.

Notice how the edges are more “crisp”. We have substan-
tially less noise than when we used the Laplacian or Sobel
gradient images. Furthermore, the outline of our coins are
clearly revealed.

In the next chapter, we’ll continue to make use of the
Canny edge detector and use it to count the number of
coins in our image.

141

10.2 canny edge detector

Further Reading

Just like thresholding is a common method for seg-
menting foreground objects from background objects,
the same can be said for edge detection – only instead
of obtaining a large blob representing the foreground,
the Canny detector gives us the outline.

However, a common challenge of using the Canny edge
detector is getting the lower and upper edge thresh-
olds just right. In order to help you (automatically)
determine these lower and upper boundaries, be sure
to read about the automatic Canny edge detector in the
Chapter 10 supplementary material:

http://pyimg.co/91daw

142

http://pyimg.co/91daw

11
C O N T O U R S

Previously, we explored how to detect edges in an image
of coins.

Now we are going to use these edges to help us find the
actual coins in the image and count them.

OpenCV provides methods to find “curves” in an image,
called contours. A contour is a curve of points, with no
gaps in the curve. Contours are extremely useful for such
things as shape approximation and analysis.

In order to find contours in an image, you need to first ob-
tain a binarization of the image, using either edge detection
methods or thresholding. In the examples below, we’ll use
the Canny edge detector to find the outlines of the coins,
and then find the actual contours of the coins.

Ready?

Here we go:

11.1 counting coins

143

11.1 counting coins

Listing 11.1: counting_coins.py

1 from __future__ import print_function
2 import numpy as np
3 import argparse
4 import cv2
5

6 ap = argparse.ArgumentParser()
7 ap.add_argument("-i", "--image", required = True,
8 help = "Path to the image")
9 args = vars(ap.parse_args())

10

11 image = cv2.imread(args["image"])
12 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
13 blurred = cv2.GaussianBlur(gray, (11, 11), 0)
14 cv2.imshow("Image", image)
15

16 edged = cv2.Canny(blurred, 30, 150)
17 cv2.imshow("Edges", edged)

The first 11 lines of code simply set up our environment
by importing packages, parsing arguments, and loading the
image.

Just as in the edge detection methods discussed in the
previous chapter, we are going to convert our image to
grayscale and then apply a Gaussian blur, making it eas-
ier for the edge detector to find the outline of the coins. We
use a much larger blurring size this time, with σ = 11. All
this is handled on Lines 11-13.

We then obtain the edged image by applying the Canny
edge detector on Line 16. Again, just as in previous edge
detection examples, any gradient values below 30 are con-
sidered non-edges whereas any values above 150 are con-
sidered sure edges.

Listing 11.2: counting_coins.py

144

11.1 counting coins

18 (_, cnts, _) = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

19

20 print("I count {} coins in this image".format(len(cnts)))
21

22 coins = image.copy()
23 cv2.drawContours(coins, cnts, -1, (0, 255, 0), 2)
24 cv2.imshow("Coins", coins)
25 cv2.waitKey(0)

Now that we have the outlines of the coins, we can find
the contours of the outlines. We do this using the cv2.
findContours function on Line 18. This method returns
a 3-tuple of: (1) our image after applying contour detec-
tion (which is modified and essentially destroyed), (2) the
contours themselves, cnts, and (3) the hierarchy of the con-
tours (see below).

Note: The return tuple of cv2. findContours has changed in
OpenCV 3.0. Originally in OpenCV 2.4.X, this tuple was only
a 2-tuple, consisting of just the contours themselves and the as-
sociated hierarchy. However, in OpenCV 3.0, we have a third
value added to the return tuple: the image itself after applying
the contour detection algorithm. This is a small, minor change
(and one that I’m personally not crazy about since it breaks back-
wards compatibility with so many scripts), but something that
can definitely trip you up when working with both OpenCV 2.4.X
and OpenCV 3.0. Be sure to take special care when using the
cv2. findContours function if you intend for your code to be
cross-version portable.

The first argument to cv2.findContours is our edged im-
age. It’s important to note that this function is destructive
to the image you pass in. If you intend using that image
later on in your code, it’s best to make a copy of it, using

145

11.1 counting coins

the NumPy copy method.

The second argument is the type of contours we want.
We use cv2.RETR_EXTERNAL to retrieve only the outermost
contours (i.e., the contours that follow the outline of the
coin). We can also pass in cv2.RETR_LIST to grab all con-
tours. Other methods include hierarchical contours using
cv2.RETR_COMP and cv2.RETR_TREE, but hierarchical con-
tours are outside the scope of this book.

Our last argument is how we want to approximate the
contour. We use cv2.CHAIN_APPROX_SIMPLE to compress
horizontal, vertical, and diagonal segments into their end-
points only. This saves both computation and memory. If
we wanted all the points along the contour, without com-
pression, we can pass in cv2.CHAIN_APPROX_NONE; however,
be very sparing when using this function. Retrieving all
points along a contour is often unnecessary and is wasteful
of resources.

Our contours cnts is simply a Python list. We can use
the len function on it to count the number of contours that
were returned. We do this on Line 20 to show how many
contours we have found.

When we execute our script, we will have the output “I
count 9 coins in this image” printed out to our console.

Now, we are able to draw our contours. In order not to
draw on our original image, we make a copy of the original
image, called coins on Line 22.

146

11.1 counting coins

A call to cv2.drawContours draws the actual contours on
our image. The first argument to the function is the image
we want to draw on. The second is our list of contours.
Next, we have the contour index. By specifying a negative
value of −1, we are indicating that we want to draw all of
the contours. However, we would also supply an index i,
which would be the i’th contour in cnts. This would allow
us to draw only a single contour rather than all of them.

For example, here is some code to draw the first, second,
and third contours, respectively:

Listing 11.3: Drawing Contours via an Index

1 cv2.drawContours(coins, cnts, 0, (0, 255, 0), 2)
2 cv2.drawContours(coins, cnts, 1, (0, 255, 0), 2)
3 cv2.drawContours(coins, cnts, 2, (0, 255, 0), 2)

The fourth argument to the cv2.drawContours function
is the color of the line we are going to draw. Here, we use
a green color.

Finally, our last argument is the thickness of the line we
are drawing. We’ll draw the contour with a thickness of
two pixels.

Now that our contours are drawn on the image, we can
visualize them on Line 24.

Take a look at Figure 11.1 to see the results of our work.
On the left is our original image. Then, we apply Canny
edge detection to find the outlines of the coins (middle). Fi-
nally, we find the contours of the coin outlines and draw
them. You can see that each contour has been drawn with

147

11.1 counting coins

Figure 11.1: Left: The original coin image. Mid-
dle: Applying the Canny edge detec-
tor to find the outlines of the coins.
Right: Finding the contours of the
coin outlines and then drawing the
contours. We have now success-
fully found the coins and are able
to count them.

a two-pixel thick green line.

But we’re not done yet!

Let’s crop each individual coin from the image:

Listing 11.4: counting_coins.py

26 for (i, c) in enumerate(cnts):
27 (x, y, w, h) = cv2.boundingRect(c)
28

29 print("Coin #{}".format(i + 1))
30 coin = image[y:y + h, x:x + w]
31 cv2.imshow("Coin", coin)
32

33 mask = np.zeros(image.shape[:2], dtype = "uint8")

148

11.1 counting coins

34 ((centerX, centerY), radius) = cv2.minEnclosingCircle(c)
35 cv2.circle(mask, (int(centerX), int(centerY)), int(radius),

255, -1)
36 mask = mask[y:y + h, x:x + w]
37 cv2.imshow("Masked Coin", cv2.bitwise_and(coin, coin, mask =

mask))
38 cv2.waitKey(0)

We start off on Line 26 by looping over our contours.

We then use the cv2.boundingRect function on the cur-
rent contour. This method finds the “enclosing box” that
our contour will fit into, allowing us to crop it from the
image. The function takes a single parameter, a contour,
and then returns a tuple of the x and y position that the
rectangle starts at, followed by the width and height of the
rectangle.

We then crop the coin from the image using our bound-
ing box coordinates and NumPy array slicing on Line 30.
The coin itself is shown to us on Line 31.

If we can find the bounding box of a contour, why not fit
a circle to the contour as well? Coins are circles, after all.

We first initialize our mask on Line 33 as a NumPy array
of zeros, with the same width and height of our original
image.

A call to cv2.minEnclosingCircle on Line 34 fits a circle
to our contour. We pass in a circle variable, the current
contour, and are given the x and y coordinates of the circle,
along with its radius.

149

11.1 counting coins

Using the (x, y) coordinates and the radius, we can draw
a circle on our mask, representing the coin. Drawing circles
was covered in Chapter 5, Section 5.2.

We then crop the mask in the exact same manner as we
cropped the coin on Line 36.

In order to show only the foreground of the coin and ig-
nore the background, we make a call to our trusty bitwise
AND function using the coin image and the mask for the
coin. The coin, with the background removed, is shown to
us on Line 37.

Figure 11.2 shows the output of our hard work. The
top figure shows that we cropped the coin by finding the
bounding box and applying NumPy array slicing. The bot-
tom image then shows our masking of the coin by fitting a
circle to the contour. The background is removed and only
the coin is shown.

As you can see, contours are extremely powerful tools to
have in our toolbox. They allow us to count objects in im-
ages and allow us to extract these objects from images. We
are just scratching the surface of what contours can do, so
be sure to play around with them and explore for yourself!
It’s the best way to learn!

150

11.1 counting coins

Figure 11.2: Top: Cropping the coin by find-
ing the bounding box and apply-
ing NumPy array slicing. Bottom:
Fitting a circle to the contour and
masking the coin.

151

11.1 counting coins

Further Reading

Whenever you are working on a new problem, consider
how contours and the associated properties of contours
can help you solve the problem. More often than not,
a clever use of contours can save you a lot of time and
avoid more advanced (and tedious) techniques.

Of course, contours can’t help you detect objects in im-
ages in all situations. But in certain circumstances, con-
tours are all you need. I’ve included examples of such
situations in the Chapter 10.2 supplementary material
– be sure to take a look:

http://pyimg.co/saz76

152

http://pyimg.co/saz76

12
W H E R E T O N O W ?

In this book, we’ve explored many image processing and
computer vision techniques, including basic image process-
ing, such as translation, rotating, and resizing. We learned
all about image arithmetic and how to apply bitwise op-
erations. Then, we explored how a simple technique like
masking can be used to focus our attention and computa-
tion to only a single part of an image.

To better understand the pixel intensity distribution of an
image, we then explored histograms. We started by com-
puting grayscale histograms, then worked our way up to
color, including 2D and 3D color histograms. We adjusted
the contrast of images using histogram equalization, then
moved on to blurring our images, using different methods,
such as averaging, Gaussian, and median filtering.

We thresholded our images to find objects of interest,
then applied edge detection.

Finally we learned how to use contours to count the num-
ber of coins in the image.

153

where to now?

So, where do you go from here?

You continue learning, exploring, and experimenting!

Use the source code and images provided in this book to
create projects of your own. That’s the best way to learn!

If you need project ideas, be sure to contact me. I love
talking with readers and helping out when I can. You can
reach me at adrian@pyimagesearch.com.

Finally, I constantly post on my blog, www.PyImageSear
ch.com, sharing new and interesting techniques related to
computer vision and image search engines. Be sure to fol-
low the blog for new posts, as well as new books and courses
as I write them.

154

mailto:adrian@pyimagesearch.com
http://www.pyimagesearch.com
http://www.pyimagesearch.com

	Introduction
	Python and Required Packages
	A note on Python & OpenCV Versions
	NumPy and SciPy
	Windows
	OSX
	Linux

	Matplotlib
	All Platforms

	OpenCV
	Linux and OSX
	Windows

	Mahotas
	All Platforms

	scikit-learn
	All Platforms

	scikit-image
	Skip the Installation

	Loading, Displaying, and Saving
	Image Basics
	So, What's a Pixel?
	Overview of the Coordinate System
	Accessing and Manipulating Pixels

	Drawing
	Lines and Rectangles
	Circles

	Image Processing
	Image Transformations
	Translation
	Rotation
	Resizing
	Flipping
	Cropping

	Image Arithmetic
	Bitwise Operations
	Masking
	Splitting and Merging Channels
	Color Spaces

	Histograms
	Using OpenCV to Compute Histograms
	Grayscale Histograms
	Color Histograms
	Histogram Equalization
	Histograms and Masks

	Smoothing and Blurring
	Averaging
	Gaussian
	Median
	Bilateral

	Thresholding
	Simple Thresholding
	Adaptive Thresholding
	Otsu and Riddler-Calvard

	Gradients and Edge Detection
	Laplacian and Sobel
	Canny Edge Detector

	Contours
	Counting Coins

	Where to Now?

